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Introduction to GMC

Dear reader, you are opening a peer review publication dedicated to new trends in Košice’s ma-
thematics - Geyser Mathematicae Cassoviensis (GMC) with contributions soundly based in
research or scholarship. It seeks to cover the whole field of post-school mathematical education and/or
research in all areas of mathematics. It aims to take a problem-oriented approach; to help formulate
the problems of higher education, to consider alternative solutions and to test them. Lastly, it seeks
to inform about the up to date research in Košice and Košice’s surround via research papers, review
articles and/or short communications.

The education reveals abilities but do not create them. Universities educate new generations that
form the national elite. Well educated people become new workers and open-minded researchers. This
points out to the fact that educational activities and problems have their important place in nowadays
scientific discussions.

A successful academic career is increasingly linked to a track record of publishing research which
is able to reach a large audience. Geyser Mathematicae Cassoviensis aims to help especially the young
researchers and PhD. students in the field. Every impact research increasingly underpins their future
research grants and career progression.

This publication is addressed to all those who work with or within the field of mathematics: stu-
dents, academics, administrators and policymakers at all levels. Via this publication we want to faster
the research in matematics. We hope that the obtained information encourage you in your study,
education, teaching or research activities.

The publication adoped a double blind reviewing policy - both the referee and author remained
anonymous to each other during the review process. It was mandatory that all co-authors have seen and
approved the submitted version of the paper and that manuscripts submitted to Geyser Mathematicae
Cassoviensis have not been published in any other journal before.

Authors are encouraged to self-archive their manuscripts and enable public access from their insti-
tution’s repository. This work can be used under the “Attribution Non-Comercial Share Alike” licence
for educational purposes.

Erika Fecková Škrabuľáková
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Quasi-Flett’s mean value theorems

Jana Borzová 1 and Ondrej Hutník2

Dedicated to the memory of our teacher Ján Ohriska (*1942–†2018).

Abstract: The paper deals with various extensions of the mean value theo-
rem of differential and integral calculus due to Thomas M. Flett. We provide an
overview of results of Flett’s type with weakening the differentiability assumption.
Considering Dini’s derivative, symmetric derivative and v-derivative we get new
mean value theorems which we call quasi-Flett’s mean value theorems.

Keywords: Mean value; Differentiability; Symmetric derivative; Flett’s theo-
rem; v-derivative.

Mathematics Subject Classification: 26A24, 26D20

1 Introduction and preliminaries

In this paper we will use the following unified notation: C(M), resp. Dn(M),
will mean the classes of continuous, resp. n-times differentiable real functions on
a set M ⊆ R. Usually we will work with compact sets M in R. For functions
f, g on an interval 〈a, b〉 (for which the following expression has its sense) the
expressions of the form

f (n)(b)− f (n)(a)

g(m)(b)− g(m)(a)
, m, n ∈ N ∪ {0},

will be denoted by the symbol baK
(
f (n), g(m)

)
. We use the usual convention h(0) :=

h, and thus for the function g(x) = x on 〈a, b〉 and m = 0 we will write only
b
aK
(
f (n)
)
.

1Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 040 01
Košice, Slovakia, E-mail: jana.borzova@upjs.sk

2Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 040 01
Košice, Slovakia, E-mail: ondrej.hutnik@upjs.sk
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In 1958 Thomas Muirhead Flett (1923–1976) published a short paper [2]
in which he gave a variation on the theme of Rolle’s theorem where the condition
f(a) = f(b) is replaced by f ′(a) = f ′(b).

Theorem 1 (Flett, 1958). If f ∈ D〈a, b〉 and f ′(a) = f ′(b), then there exists
η ∈ (a, b) such that

f ′(η) = η
aK(f). (1)

Alternatively, Flett’s result may be seen as Lagrange’s type mean value theorem
with Rolle’s type condition. Geometrically, if a curve y = f(x) has a tangent at
each point of 〈a, b〉 and tangents at the end points [a, f(a)] and [b, f(b)] are
parallel, then Flett’s theorem guarantees the existence of such a point η ∈ (a, b)
that the tangent constructed to the graph of f at that point passes through the
point [a, f(a)].

Further sufficient conditions for validity of (1) are investigated in [4]. We
summarize some of them: for f ∈ D〈a, b〉 the assertion of Flett’s theorem holds
in each of the following cases:

(i) f ′(a) = f ′(b) (Flett’s condition);

(ii) (f ′(a)− b
aK(f)) · (f ′(b)− b

aK(f)) ≥ 0 (Trahan’s condition);

(iii) f(a)+f(b)
2 = 1

b−a
∫ b
a f(x) dx (Tong’s condition);

(iv) (f ′(a)− b
aK(f)) · f ′′(a) > 0 provided f ′′(a) exists (Maleševic̀’s condition);

(v) f(a)+f(b)
2 = f(a+b2 ) (Tan-Li’s condition).

Continuing in extension of Rolle’s condition to higher-order derivatives Paw-
likowska [6] obtained the following generalization of Flett’s theorem.

Theorem 2 (Pawlikowska, 1999). If f ∈ Dn〈a, b〉 with f (n)(a) = f (n)(b), then
there exists η ∈ (a, b) such that

η
aK(f) =

n∑
i=1

(−1)i+1

i!
(η − a)i−1f (i)(η).

Clearly, Theorem 2 reduces to Theorem 1 for n = 1. There are also results elim-
inating/replacing the condition f (n)(a) = f (n)(b), see [4]. All these results may
be extended at least in two directions: to move from the real line to more general
spaces, and/or to consider other types of differentiability of considered functions.
In this paper we deal with the latter case and we give results for three general-
izations of differentiability: Dini’s derivable numbers, Ohriska’s v-derivative and
symmetric derivative. Since some needed results are not well known, we provide
full proofs for the sake of completeness and for the convenience of the reader.



2 Flett’s theorem with generalized derivatives

Let f be defined in a neighbourhood O(x0) of a point x0. The concept of
derivative of f at x0 in the sense of proper limit

f ′(x0) := lim
x→x0

x
x0
K(f)

is very useful. However, since the derivative may fail to exist, it seems desirable
to have expressions which may serve us when there is no derivative at a point. For
this reason several replacements of derivative have appeared in different contexts:
Dini’s derivative, symmetric derivative, Peano derivative, etc. The aim of this
section is to provide further extensions of Flett’s theorem (that originally requires
the existence of the derivative f ′) for not necessarily differentiable functions. In
each case we prove a variant of Flett’s theorem commonly called quasi-Flett’s
theorems.

2.1 Flett’s theorem with Dini’s derivatives

Probably the most elementary replacement of nonexistence of derivative at a
point are Dini’s derivatives that exist at each point of a function defined on an
open interval.

Definition 3. Let f be a real function defined in a neighbourhood of a point x0.
Four Dini’s derivatives of f at x0 are given by

(i) D+f(x0) := lim sup
x→x+0

x
x0
K(f) (upper right Dini’s derivative);

(ii) D+f(x0) := lim inf
x→x+0

x
x0
K(f) (lower right Dini’s derivative);

(iii) D−f(x0) := lim sup
x→x−0

x
x0
K(f) (upper left Dini’s derivative);

(iv) D−f(x0) := lim inf
x→x−0

x
x0
K(f) (lower left Dini’s derivative).

It is easy to verify that f ′(x0) exists if and only if all four Dini’s derivatives of f
at x0 give the same value, and one-sided derivative exists if and only if upper and
lower Dini’s derivative (from the corresponding side) are equal. For our purposes
the following result will be important, we refer [7] for the proof.

Proposition 4. Let f : 〈a, b〉 → R such that f(a) = f(b) and possess mini-
mum m and maximum M on the interval 〈a, b〉. If m < f(a) = f(b), then there
exists η ∈ (a, b) such that

D−f(η) ≤ 0 ≤ D+f(η).



If M > f(a) = f(b), then there exists ξ ∈ (a, b) such that

D+f(ξ) ≤ 0 ≤ D−f(ξ).

A generalization of Flett’s theorem with Dini’s derivatives is as follows. Recall
that a function f defined on a neighbourhood O(x0) of a point x0 is strictly
increasing at x0 if there exists δ > 0 such that for x ∈ (x0 − δ, x0) ∩ O(x0) it
holds f(x) < f(x0) and for x ∈ (x0, x0 + δ) ∩ O(x0) it holds f(x) > f(x0).

Theorem 5 (Lakshminarasimhan, 1966). Let f ∈ C〈a, b〉 and f be differentiable
at points a and b. If all four Dini’s derivatives of f on the interval (a, b) are
finite and f ′(a) = f ′(b), then there exist η, ξ ∈ (a, b) such that

D+f(η) ≤ η
aK(f) ≤ D−f(η) or D−f(ξ) ≤ ξ

aK(f) ≤ D+f(ξ).

Proof. Without loss of generality we may assume that f ′(a) = f ′(b) = 0, other-
wise we take the function h(x) = f(x)− xf ′(a) for x ∈ 〈a, b〉. For

g(x) =

{
x
aK(f), x ∈ (a, b〉
f ′(a), x = a,

(2)

we have g ∈ C〈a, b〉 and g′(b) = −g(b)
b−a . From it follows that if g(b) > 0, then

g′(b) < 0, i.e., g is strictly decreasing at b. Note that also g(a) = 0. Since g ∈
C〈a, b〉, the maximum of g attains at some point η ∈ (a, b) and by Proposition 4
we get D+g(η) ≤ 0 and D−g(η) ≥ 0. Immediately, from the equalities

D+g(η) = − 1

η − a
[
η
aK(f) +D+f(η)

]
,

D−g(η) = − 1

η − a
[ηaK(f) +D−f(η)]

we have the inequality D+f(η) ≤ η
aK(f) ≤ D−f(η).

On the other hand, if g(b) < 0, then g′(b) > 0, so g is strictly increasing at b
with g(a) = 0. Therefore, g attains minimum at ξ ∈ (a, b), and D+g(ξ) ≥ 0 and
D−g(ξ) ≤ 0, which implies the required inequalities.

Finally, if g(b) = 0, whereas g ∈ C〈a, b〉 and g(a) = 0, then g has maximum
at η or minimum at ξ somewhere between points a and b. Therefore, similarly
as above, either D+g(η) ≤ 0 and D−g(η) ≥ 0, or D+g(ξ) ≥ 0 and D−g(ξ) ≤ 0.
This is equivalent to the assertion of theorem.

Theorem 6 (Reich, 1969). Let f ∈ C〈a, b〉 and f be differentiable at b. If all
four Dini’s derivatives of f on (a, b) are finite and [f(b) − f(a)]f ′(b) ≤ 0, then
there exist η, ξ ∈ (a, b〉 such that

D+f(η) ≤ 0 ≤ D−f(η) or D−f(ξ) ≤ 0 ≤ D+f(ξ). (3)



Proof. If f ′(b) = 0, we put η = b and ξ = b and get the desired inequalities. If
f(b) = f(a) and f is nonconstant, then from continuity f attains maximum at η
and minimum at ξ ∈ (a, b). By Proposition 4 we get the statement.

Assume that [f(b) − f(a)]f ′(b) < 0. Then either f ′(b) < 0 and f(b) > f(a),
or f ′(b) > 0 and f(b) < f(a). Since f ∈ C〈a, b〉, in the first case f(b) > f(a) and
f is strictly decreasing at b, so f has maximum at η ∈ (a, b), and it yields the
first inequality by Proposition 4. Similarly, in the second case f attains minimum
at ξ ∈ (a, b), and we get the second required inequality.

Now we are ready to extend Trahan’s sufficient condition, see Introduction, for
Dini’s derivatives.

Theorem 7. Let f ∈ C〈a, b〉 and f be differentiable at a and b. If all four Dini’s
derivatives of f are finite on (a, b) and(

f ′(b)− b
aK(f)

)
·
(
f ′(a)− b

aK(f)
)
≥ 0,

then there exist η, ξ ∈ (a, b) such that (3) holds.

Proof. Consider the function g given by (2). It is easy to verify that g fulfills all
assumptions of Theorem 6 and substituting g in (3) we get the required result.

2.2 Flett’s theorem with v-derivative

Derivative of a function f at a point x0 can be seen as a limit at x0 of a
proportion of an increment of function f and an increment of function v(t) = t.
If this function v is not fixed, we come to a generalized notion of derivative with
respect to another function introduced by Ohriska in [5]. In what follows we
suppose real functions f, g, v, v1, . . . of (one) real variable and O∗(x0) denotes a
reduced neighbourhood of a point x0.

Definition 8 (Ohriska, 1989). Let functions f and v be defined in a neighbour-
hood O(x0) of a point x0 ∈ R, and let for each x ∈ O∗(x0) be v(x) 6= v(x0). If
there exists proper limit

lim
x→x0

x
x0
K(f, v),

its value is called a quasi-derivative of f at x0 (more precisely, derivative of f at
x0 with respect to v, resp. v-derivative of f at x0). We denote it by f ′v(x0).

Similarly we define one-sided v-derivatives of f at x0. Clearly, v-derivative
f ′v(x0) exists if and only if there exist one-sided v-derivatives f ′−v (x0) and f ′+v (x0),
and f ′v(x0) = f ′−v (x0) = f ′+v (x0). The set of all functions f : M → R having
v-derivative at each point of M ⊆ R for a fixed function v is denoted by Dv(M).

Remark 9. From Definition 8 one can see that f ′f(x0) = 1 at each point x0
such that f is defined in O(x0) and condition x ∈ O∗(x0) implies f(x) 6= f(x0).



Moreover, if v is differentiable at x0 with v′(x0) 6= 0, then f ′v(x0) exists if and
only if f ′(x0) exists. In this case f ′v(x0) = f ′(x0)

v′(x0)
.

Note that strict monotonicity of f at x0 can be obtained using v-derivative.
More precisely, if v is strictly increasing at x0 and f ′v(x0) > 0, then f is strictly
increasing at x0. Also, other versions can be easily derived. Then a version of
Flett’s theorem with v-derivative reads as follows.

Theorem 10. Let v ∈ C〈a, b〉 be strictly monotone on 〈a, b〉 and f ∈ Dv〈a, b〉.
If f ′v(a) = f ′v(b), then there exists η ∈ (a, b) such that

f ′v(η) = η
aK(f, v). (4)

Proof. Without loss of generality suppose f ′v(a) = f ′v(b) = 0, otherwise consider
the function h(x) = f(x)− v(x)f ′v(a) for x ∈ 〈a, b〉. Put

g(x) =

{
x
aK(f, v), x ∈ (a, b〉
f ′v(a), x = a.

(5)

Clearly, g ∈ C〈a, b〉 ∩Dv(a, b) and

g′v(x) = −
x
aK(f, v)− f ′v(x)

v(x)− v(a)
= − g(x)

v(x)− v(a)
+

f ′v(x)

v(x)− v(a)
, x ∈ (a, b〉.

We want to show that there exists η ∈ (a, b) such that g′v(η) = 0.
Let v be strictly increasing on 〈a, b〉. By definition of g we have g(a) = 0. If

g(b) = 0, then by Rolle’s theorem there is η ∈ (a, b) such that g′v(η) = 0. Now let
g(b) 6= 0. Suppose that g(b) > 0 (similar arguments apply in the case g(b) < 0).
Then

g′v(b) = − g(b)

v(b)− v(a)
< 0.

Since g ∈ C〈a, b〉 and g′v(b) < 0, i.e., g is strictly decreasing at b, then there exists
x1 ∈ (a, b) such that g(x1) > g(b). From continuity of g on the interval 〈a, x1〉
and from the inequalities 0 = g(a) < g(b) < g(x1), Darboux intermediate value
theorem guarantees the existence of x2 ∈ (a, x1) such that g(x2) = g(b). Since g ∈
C〈x2, b〉 ∩Dv(x2, b), Rolle’s theorem gives g′v(η) = 0 for some η ∈ (x2, b) ⊂ (a, b).
The case of v being strictly decreasing on 〈a, b〉 may be proceed similarly.

Next result eliminates the condition f ′v(a) = f ′v(b). For its proof it is enough
to take the function

ψ(x) = f(x)− b
aK(f ′v, v) · (v(x)− v(a))2

2
, x ∈ 〈a, b〉,

and apply the quasi-Flett’s Theorem 10.



Theorem 11. Let v ∈ C〈a, b〉 be strictly monotone on 〈a, b〉. If f ∈ Dv〈a, b〉,
then there exists η ∈ (a, b) such that

f ′v(η) = η
aK(f, v) + b

aK(f ′v, v) · v(η)− v(a)

2
.

In order to extend Pawlikowska’s theorem, we need the notion of quasi-derivative
of higher order.

Definition 12 (Ohriska, 1989). Let n > 1 be a natural number. Let vn and
f
(n−1)
v1,v2,...,vn−1 be defined in a neighbourhood O(x0) of a point x0 ∈ R and vn(x) 6=
vn(x0) for each x ∈ O∗(x0). If there exists proper limit

lim
x→x0

x
x0
K
(
f (n−1)v1,v2,...,vn−1

, vn

)
,

we call it nth v-derivative of function f at x0 and we denote it f (n)v1,v2,...,vn(x0).

In the case when all functions vn are the same, i.e., v1 = v2 = · · · = vn =
v, we will write f (n)vn (x0) instead of f (n)v1,v2,...,vn(x0). The next result is a quasi-
Pawlikowska’s theorem for nth v-derivative.

Theorem 13. Let v ∈ C〈a, b〉 be strictly increasing on 〈a, b〉. If f ∈ Dvn〈a, b〉
and f (n)vn (a) = f

(n)
vn (b), then there exists η ∈ (a, b) such that

η
aK(f, v) =

n∑
i=1

(−1)i+1

i!
(v(η)− v(a))i−1f

(i)
vi (η). (6)

Proof. The idea of proof consists in generalizing the proof of Theorem 10 using
(n−1)th derivative of function g (suitably defined at x = a) and Rolle’s theorem.
Namely,

Gf(x) =

{
g
(n−1)
vn−1 (x), x ∈ (a, b〉

1
nf

(n)
vn (a), x = a.

plays the crucial role, because Gf ∈ C〈a, b〉 ∩Dvn(a, b) and

g
(n)
vn (x) =

f
(n)
vn (x)

v(x)− v(a)
− n

g
(n−1)
vn−1 (x)

v(x)− v(a)
, x ∈ (a, b〉.

This can be verified by induction. Moreover, if f (n+1)
vn+1 (a) exists, then

lim
x→a+

g
(n)
vn (x) =

1

n+ 1
f
(n+1)
vn+1 (a).

The rest of the proof is analogous to the proof of Theorem 10.
A different proof is based on iteration of quasi-Flett’s theorem for v-derivative

applied for function

ϕk(x) =
k∑
i=0

(−1)i+1

i!
(k − i)(v(x)− v(a))if

(n−k+i)
vn−k+i (x) + v(x)f

(n−k+1)

vn−k+i (a)



with k = 1, 2, . . . , n.

Remark 14. We may observe that the result of Theorem 13 holds for the case
v1 = v2 = · · · = vn = v. The question is whether one can prove an analogy of
Pawlikowska’s theorem for different v’s. However, we failed even for two different
functions v1 and v2. The problem is that the techniques of proofs for original
Pawlikowska’s theorem could not be used, or they did not give any reasonable
result.

In connection with v-derivative we may ask which kind of integral is its cor-
responding counterpart, i.e., how an integral version of quasi-Flett’s theorem for
v-derivative looks like. It is possible to show that it is a special kind of Riemann-
Stieltjes integral with respect to a strictly monotone function v ∈ C〈a, b〉. Now
the integral version of quasi-Flett’s theorem takes the following form.

Theorem 15. Let v ∈ C〈a, b〉 be a strictly monotone function on 〈a, b〉. If
f ∈ C〈a, b〉 and f(a) = f(b), then there exists η ∈ (a, b) such that

(v(η)− v(a))f(η) =

∫ η

a

f(x) dv(x).

Proof. Consider the function F (x) =
∫ x
a f(t) dv(t) on 〈a, b〉 and apply the quasi-

Flett’s theorem for v-derivative.
In what follows we show further results for Riemann-Stieltjes integral in con-

nection with quasi-Flett’s theorem extending Tong’s sufficient condition. For that
purpose for functions f, v : 〈a, b〉 → R, where v is continuous and strictly mono-
tone on 〈a, b〉, we introduce

A∗f(a, b) =
f(a) + f(b)

2
, I∗f (a, b) =

1

v(b)− v(a)

∫ b

a

f(x) dv(x).

Theorem 16. Let v ∈ C〈a, b〉 be strictly monotone on 〈a, b〉 and f ∈ C〈a, b〉 ∩
Dv(a, b).

(i) If A∗f(a, b) = I∗f (a, b), then there exists η ∈ (a, b) such that (4) holds.

(ii) There exists ζ ∈ (a, b) such that

f ′v(ζ) = ζ
aK(f, v) +

6[A∗f(a, b)− I∗f (a, b)]

(v(b)− v(a))2
(v(ζ)− v(a)).

Proof. (i) Consider the function

h(x) =
f(x) + f(a)

2
(v(x)− v(a))−

∫ x

a

f(t) dv(t), x ∈ 〈a, b〉.



Then h ∈ C〈a, b〉 ∩Dv(a, b) with h(a) = 0 and

h(b) = (v(b)− v(a))[A∗f(a, b)− I∗f (a, b)] = 0.

By Rolle’s theorem for function h on the interval 〈a, b〉 there exists η ∈ (a, b) such
that h′v(η) = 0. Since

h′v(x) =
1

2
f ′v(x)(v(x)− v(a)) +

1

2
[f(x) + f(a)]− f(x), x ∈ (a, b),

then from h′v(η) = 0 we have f ′v(η) = η
aK(f, v).

(ii) Put

H(x) = f(x)−
6[A∗f(a, b)− I∗f (a, b)]

(v(b)− v(a))2
(v(x)− v(a))(v(x)− v(b)), x ∈ 〈a, b〉.

Then H ∈ C〈a, b〉 ∩ Dv(a, b) with H(a) = f(a) and H(b) = f(b). Thus,
A∗H(a, b) = A∗f(a, b) and a short computation yields I∗H(a, b) = A∗H(a, b). Then
by (i) there exists ζ ∈ (a, b) such that H ′v(ζ) = ζ

aK(H, v). Since

H ′v(x) = f ′v(x)−
6[A∗f(a, b)− I∗f (a, b)]

(v(b)− v(a))2
(2v(x)− v(a)− v(b)),

we conclude

f ′v(ζ)−
6[A∗f(a, b)− I∗f (a, b)]

(v(b)− v(a))2
(2v(ζ)− v(a)− v(b))

=
1

v(ζ)− v(a)

[
f(ζ)−

6[A∗f(a, b)− I∗f (a, b)]

(v(b)− v(a))2
(v(ζ)− v(a))(v(ζ)− v(b))− f(a)

]
,

which is equivalent to the desired statement.

2.3 Flett’s theorem with symmetric derivative

Derivative of a real function f : R → R is a function f ′ : R → R that is
defined at a point x by the limit

f ′(x) = lim
h→0

x+h
x K(f)

whenever this limit exists. A small modification has suprising consequences.

Definition 17. Let f be defined on a neighbourhood O(x0) of a point x0. We say
that f has symetric derivative at x0, if there exists a proper limit lim

h→0

x0+h
x0−hK(f).

The value of this limit is denoted by f s(x0).

If f has symmetric derivative at each point of a set M , we write f ∈ Ds(M).
Clearly, D(M) ⊂ Ds(M), however the reverse inclusion does not hold. More
interestingly, symmetric derivative can exist at a point where the function is not



defined, e.g. for g(x) = x−2 at x0 = 0 we have gs(0) = 0. Consequently,
Ds(M) 6⊂ C(M).

Since many results of differential calculus fail for symmetric derivative, we will
use the following useful result, see [1].

Lemma 18 (Aull, 1967). Let f ∈ C〈a, b〉 ∩Ds(a, b).

(i) If f(b) > f(a), then there exists η ∈ (a, b) such that f s(η) ≥ 0.

(ii) If f(b) < f(a), then there exists ξ ∈ (a, b) such that f s(ξ) ≥ 0.

Proof. We prove only (i), the second statement can be proved analogously. Let
k be a real number such that f(a) < k < f(b). Then the set M = {x ∈
〈a, b〉; f(x) > k} is non-empty and bounded from below by a. SinceM ⊂ R, there
exists η = inf M . From f ∈ C〈a, b〉 and f(a) < k < f(b) we have η /∈ {a, b}. Let
Oh(η) = (η − h, η + h) be an arbitrary neighbourhood of η in the interval 〈a, b〉.
Then there exist x ∈ Oh(η) such that f(x+ h) > k and f(x− h) ≤ k. Thus,

f s(η) = lim
h→0

f(η + h)− f(η − h)

2h
≥ 0.

The following result can be understood as a version of Rolle’s theorem for
symmetric derivative.

Theorem 19 (Aull, 1967). Let f ∈ C〈a, b〉 ∩Ds(a, b). If f(a) = f(b), then there
exist points η, ξ ∈ (a, b) such that f s(η) ≥ 0 ≥ f s(ξ).

Proof. Suppose that f(a) = 0 = f(b). If it is not the case, we take h(x) =
f(x) − f(a) on 〈a, b〉. For f ≡ 0 the result holds trivially, therefore we further
suppose f 6≡ 0. Since f ∈ C〈a, b〉 and f(a) = f(b) = 0, then there exist points
x1, x2 ∈ (a, b) such that

(f(x1) > 0 ∧ f(x2) < 0) ∨ (f(x1) < 0 ∧ f(x2) > 0)

∨ (f(x1) > 0 ∧ f(x2) > 0) ∨ (f(x1) < 0 ∧ f(x2) < 0).

Let us consider only the case f(x1) > 0 and f(x2) < 0, other cases are analogous.
Applying Lemma 18 on the interval 〈a, x1〉 we get f s(η) ≥ 0 for some η ∈ (a, x1) ⊂
(a, b). Applying Lemma 18 again for function f on the interval 〈a, x2〉 we conclude
f s(ξ) ≤ 0 for some ξ ∈ (a, x2) ⊂ (a, b).

Remark 20. Simeon Reich in the paper [8] gave another sufficient condition
for validity of quasi-Rolle’s theorem considering differentiability of f at b and
inequality [f(b)− f(a)]f ′(b) ≤ 0 instead of equality f(a) = f(b). In fact, it is a
version of Trahan’s condition for symmetric derivative.

Next result is a quasi-Lagrange theorem for symmetric derivative.



Theorem 21 (Aull, 1967). Let f ∈ C〈a, b〉 ∩ Ds(a, b). Then there exist points
η, ξ ∈ (a, b) such that

f s(η) ≤ b
aK(f) ≤ f s(ξ).

Proof. For function g : 〈a, b〉 → R defined by

g(x) = f(x)− f(a)− b
aK(f)(x− a)

we have g ∈ C〈a, b〉 ∩Ds(a, b) and g(a) = g(b) = 0. Applying Theorem 19 we get
gs(η) ≤ 0 ≤ gs(ξ) for some η, ξ ∈ (a, b), which is equivalent to f s(η) ≤ b

aK(f) ≤
f s(ξ).

Now we can state some generalizations of Flett’s mean value theorem with
symmetric derivative. In what follows, for f on 〈a, b〉 we use the convention
f ′(a) = f s(a) and f ′(b) = f s(b). For f ∈ C〈a, b〉 ∩Ds(a, b) that is differentiable
at a, b we consider the function g given by (5). Clearly, g ∈ C〈a, b〉 ∈ Ds(a, b〉
with

gs(x) = −f(x)− f(a)

(x− a)2
+
f s(x)

x− a
, x ∈ (a, b〉.

Since

[g(b)− g(a)]g′(b) =
−1

b− a
(
f ′(b)− b

aK(f)
)
·
(
f ′(a)− b

aK(f)
)
,

under the condition (
f ′(b)− b

aK(f)
)
·
(
f ′(a)− b

aK(f)
)
≥ 0

this product is nonpositive. By Reich’s result from Remark 20 there exist points
η, ξ ∈ (a, b〉 such that gs(ξ) ≤ 0 ≤ gs(η). Thus, we have proved the following
result.

Theorem 22. Let f ∈ C〈a, b〉 ∩Ds(a, b). If f is differentiable at points a, b and(
f ′(b)− b

aK(f)
)
·
(
f ′(a)− b

aK(f)
)
≥ 0, (7)

then there exist points η, ξ ∈ (a, b〉 such that

f s(η) ≥ η
aK(f) and f s(ξ) ≤ ξ

aK(f).

Now we eliminate the condition (7) from quasi-Flett’s theorem.

Theorem 23. Let f ∈ C〈a, b〉∩Ds(a, b). If f is differentiable at points a, b, then
there exist η, ξ ∈ (a, b) such that

f s(η) ≥ η
aK(f) + b

aK(f ′) · η − a
2

and f s(ξ) ≤ ξ
aK(f) + b

aK(f ′) · ξ − a
2

. (8)



Proof. Consider the function

ψ(x) = f(x)− b
aK(f ′) · (x− a)2

2
, x ∈ 〈a, b〉.

Then ψ ∈ Ds(a, b) and

ψs(x) = f s(x)− b
aK(f ′) · (x− a).

Since f is differentiable at the end-points of the interval 〈a, b〉, the function ψ
is differentiable at the end-points of 〈a, b〉 and ψ′(b) = ψ′(a). Then the result
follows from quasi-Flett’s Theorem 22 for function ψ on the interval 〈a, b〉.

Now we mention a Cauchy version of quasi-Flett’s theorem for symmetric
derivative due to Reich [8] and we provide its interesting corollaries.

Theorem 24 (Reich, 1969). Let f, g ∈ C〈a, b〉∩Ds(a, b) and f, g be differentiable
at points a, b with g′(a) 6= 0. If g(x) 6= g(a) for each x ∈ (a, b〉 and(

f ′(a)

g′(a)
− b

aK(f, g)

)(
f ′(b)(g(b)− g(a))− (f(b)− f(a))g′(b)

)
≥ 0, (9)

then there exist points η, ξ ∈ (a, b〉 such that

[g(η)−g(a)]f s(η) ≥ [f(η)−f(a)]gs(η) and [g(ξ)−g(a)]f s(ξ) ≤ [f(ξ)−f(a)]gs(ξ).

Proof. Define the function h : 〈a, b〉 → R by

h(x) =

{
x
aK(f, g), x ∈ (a, b〉
f ′(a)
g′(a) , x = a.

(10)

Then h ∈ C〈a, b〉 ∩Ds(a, b) and h is differentiable at b. For its symmetric deriva-
tive holds

hs(x) = −
x
aK(f, g)

g(x)− g(a)
gs(x) +

f s(x)

g(x)− g(a)
, x ∈ (a, b).

By the assumption (9) we have [h(b) − h(a)]h′(b) ≤ 0. Then by Reich’s result
from Remark 20 we get hs(η) ≥ 0 ≥ hs(ξ), which is equivalent to the desired
result.

Corollary 25. Let f, g ∈ C〈a, b〉 ∩ Ds(a, b) and f, g be differentiable at points
a, b. Let g′(a) 6= 0, g′(b) > 0 and g(x) 6= g(a) for each x ∈ (a, b〉. If

f ′(a)

g′(a)
=
f ′(b)

g′(b)
, (11)

then there exist points η, ξ ∈ (a, b) such that

[g(η)−g(a)]f s(η) ≥ [f(η)−f(a)]gs(η) and [g(ξ)−g(a)]f s(ξ) ≥ [f(ξ)−f(a)]gs(ξ).



Proof. Consider the function h given by (10) and investigate two cases.
(i) Suppose that [g(b)− g(a)]f ′(b) = [f(b)− f(a)]g′(b). Then

h(b)− h(a) =
f(b)− f(a)

g(b)− g(a)
− f ′(a)

g′(a)
=
f ′(b)

g′(b)
− f ′(a)

g′(a)
= 0.

Applying Theorem 21 for function h on the interval 〈a, b〉 there exist points η, ξ ∈
(a, b〉 such that hs(η) ≥ 0 ≥ hs(ξ) which yields the desired result.

(ii) Further let us consider the case [g(b) − g(a)]f ′(b) 6= [f(b) − f(a)]g′(b).
Therefore, either

[g(b)− g(a)]f ′(b)− [f(b)− f(a)]g′(b) > 0 (12)

or
[g(b)− g(a)]f ′(b)− [f(b)− f(a)]g′(b) < 0. (13)

Then it holds
f ′(b)− f(b)− f(a)

g(b)− g(a)
g′(b) > 0,

and by (11) we have

f ′(a)

g′(a)
g′(b)− f(b)− f(a)

g(b)− g(a)
g′(b) > 0. (14)

From the inequality (12) and (14) we get(
f ′(a)

g′(a)
g′(b)− f(b)− f(a)

g(b)− g(a)
g′(b)

)(
[g(b)− g(a)]f ′(b)− [f(b)− f(a)]g′(b)

)
> 0.

Since g′(b) > 0, we conclude(
f ′(a)

g′(a)
− f(b)− f(a)

g(b)− g(a)

)[
g(b)− g(a)]f ′(b)− [f(b)− f(a)]g′(b)

)
> 0.

We proceed analogically in the case of inequality (13). Then we apply Theorem 24.
It is easy to see that η 6= b and ξ 6= b which completes the proof.

Much more interesting is an observation that from Theorem 24 we may prove
the original Flett’s theorem.

A new proof of original Flett’s theorem. Let f ∈ D〈a, b〉 with f ′(a) =
f ′(b) and put g(x) = x. Consider the function

h(x) =

{
x
aK(f), x ∈ (a, b〉
f ′(a), x = a.

Clearly, h ∈ C〈a, b〉 ∩D(a, b). If f ′(b) = b
aK(f), then h(a) = h(b) and by Rolle’s

theorem there exists η ∈ (a, b) such that h′(η) = 0, which is equivalent to (1).



Now, let f ′(b) 6= b
aK(f). Then by Theorem 24 there exist points η, ξ ∈ (a, b)

such that f ′(η) ≥ η
aK(f) and f ′(ξ) ≤ ξ

aK(f). If we have equality in both inequal-
ities, we have the desired result. If both inequalities are strict, we put

j(x) = f ′(x)− x
aK(f), x ∈ 〈η, ξ〉 or 〈ξ, η〉.

Then there exists a function J such that J ′(x) = j(x) on 〈η, ξ〉, so j is a darboux
function on 〈η, ξ〉. Since j(η) > 0 > j(ξ), then there exists a point ζ ∈ (η, ξ) ⊂
〈a, b〉 such that j(ζ) = 0.
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Using GeoGebra
for solving equations and inequalities

Jozef Doboš1

Abstract: In this article, we show how to use GeoGebra for solving equations
and inequalities in school Mathematics. Many solutions offered by GeoGebra
in its CAS View are not too dissimilar from the answers expected in a school
context. However, there are multiple differences that could confuse both students
and teachers. Using actual worked examples, the aim of this article is to point
out some of the reasons for these differences and to demonstrate how even in such
situations GeoGebra can deliver solutions expected in school Mathematics.

Keywords: GeoGebra; Equations; Inequalities.
Mathematics Subject Classification: 97U70.

1 Introduction

The GeoGebra software is a powerful tool for solving equations and inequalities
in school Mathematics. Many solutions offered by this tool are similar to the
answers expected in a school context. However, there are multiple differences that
could confuse both students and teachers. The aim of this article is to highlight
several reasons for these discrepancies. We also show how even in such situations
solutions expected in school Mathematics can be delivered via GeoGebra.

2 Solving some equations and inequalities by a software

Equations and inequalities are to be solved in the computer algebra window
(CAS View). In order to effectively use this tool, students and teachers need to
understand the sources of unexpected solutions and have an idea how to deal with
them.

1Institute of Mathematics, Faculty of Science, P J Šafárik University, Jesenná 5, 040 01 Košice, Slovakia,
e-mail: jozef.dobos@upjs.sk
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1
√
2x+1−√x = 0
√
2x+1−√x = 0

2 Solve($1)

{x = −1}
3 Substitute($1,x = −1)

0 = 0

4 f(x) :=
√
2x+1−√x

f(x) :=
√
2x+1−√x

5 f(−1)
0

–1–1 11

11

00

Figure 1: Solving the equation
√

2x+ 1−
√
x = 0

The first example is a solution to equation
√

2x+ 1−
√
x = 0. (1)

Put equation (1) into cell No. 1 either using a virtual keyboard or by directly
typing sqrt(2x+1)-sqrt(x)=0 in there (see Figure 1). Next, using a mouse, click the

button (third left). This ensures the insertion of an expressions without (not
always correct) changes.

Write Solve($1) into cell No. 2, where Solve(<equation>) is a command for solving
equations, and $1 is a reference to the contents of a cell No. 1. Afterwards, click the

button in the top toolbar (first left). GeoGebra will print out a list of solutions
to this equation, hence the angle brackets. GeoGebra is trying to persuade us that
equation (1) has exactly one real root x = −1.

To check this solution, we can substitute it back into the equation saved in a
cell No. 1. Thus, write Substitute($1,x=-1) into cell No. 3. Next, click the button
in the top toolbar (first left). The result is 0 = 0, verifying that x = −1 is a valid
solution (by GeoGebra). However, we know that x = −1 cannot be a solution
to (1) since negative numbers cannot appear under a square root sign. This is
what students are thought in secondary schools. Something not being correct
is even shown by GeoGebra itself in the graphical window. Write f(x):=sqrt(2x+1)-

sqrt(x) in a cell No. 4. That is how in CAS window one defines a function f using
f(x) =

√
2x+ 1−

√
x.

Next, click the button in the top toolbar (third left). GeoGebra will plot a



graph of a function f , what is actually the left-hand side of equation (1).

Write f(-1) in a cell No. 5 in order to check whether GeoGebra can calculate the
value of function f at x = −1. Next, click the button in the top toolbar (first
left). GeoGebra is trying to persuade us that f(−1) = 0. However, that would
mean that the point (−1, 0) lies on a graph of the function f , but it does not.
There is clearly a discrepancy.

An explanation is found when we solve the equation
√

2x+ 1 =
√
x (2)

instead of equation (1).
Actually, equation (1) came from equation (2) which can be found in [5]. That

is a dissertation which deals on solving equations in school Mathematics using
computer algebra systems (CAS). The substitution in a cell No. 3 shows that
after plugging x = −1 into equation (2), equality = is obtained, where is
a special symbol used by GeoGebra for imaginary values. This must not to be
confused with the letter í. However, we can insert it directly using keyboard
shortcut Alt+i, or via a virtual keyboard. See Figure 2.

1
√
2x+1 =

√
x

√
2x+1 =

√
x

2 Solve($1)

{x = −1}
3 Substitute($1,x = −1)

=

Figure 2: Solving the equation
√

2x+ 1 =
√
x

This way of solving irrational equations is not specific to GeoGebra. For instance,
commercial software Maple behaves in the exact same manner. The only difference
is in the labelling of the imaginary values as can be seen in an example on Figure 3.
CAS systems usually calculate the principal root (glavnoe znaqenie korn�),
cf. [4] and [1]. If non-zero complex number z is expressed in a trigonometric form
z = r(cos θ + i sin θ), where −π < θ ≤ π, then the principal value of n-root of z
is a complex number w0 = n

√
r
(
cos θ

n + i sin θ
n

)
.



solve 2 xC1 K x = 0

K1

f d x/ 2 xC1

x/ 2 xC1

f K1

I

g d x / x

x/ x

g K1

I

Figure 3: Solving the equation
√

2x+ 1−
√
x = 0 via Maple

For GeoGebra to solve equation (2), as would be expected in school Mathe-
matics, the domain of the equation has to be taken into account, too. That can
be obtained by solving a system of inequalities 2x+ 1 ≥ 0, x ≥ 0. It is sufficient
in a cell No. 1 in the CAS window to type

Solve({sqrt(2x+1)=sqrt(x),2x+1>=0,x>=0})

By doing so, we solve a mixed system; one equation and two inequalities (that
define a domain of the equation). Next, click button in the top toolbar (first
right). GeoGebra now prints out a correct result – an empty list in a form of {}.

We can also try the suggested procedure on the following equation√
2x2 + 5x+ 1 =

√
x+ 1. (3)

Command Solve(sqrt(2x^2+5x+1)=sqrt(x+1) results in a list of solutions {x=-2,x=0},
out of which x = −2 does not belong to the domain of equation (3). However,
command

Solve({sqrt(2x^2+5x+1)=sqrt(x+1),2x^2+5x+1>=0,x+1>=0}

results in an expected list of solutions {x=0}.

Interesting is also the situation with a cube root. Our secondary school text-
books explicitly say that we do not define n-th root of negative numbers. See for
instance [3]. Only in textbook [2], it is mentioned that it is possible to define a
cube root of any (even negative) number. But immediately in the next sentence
it is said that we are only interested in roots of positive numbers and indeed it is
being followed. Therefore, when solving equation

3
√

24 + x+
√

12− x = 6 (4)

one must first decide whether to allow for a cube root of negative numbers or
not. GeoGebra will otherwise include also number x = −88 among the solutions.



Similarly to the above, in program GeoGebra, one is solving a mixed system
consisting of an equation and one or two inequalities determining the domain of
that equation.

The difference between buttons and can be tested, for instance, using
equation √

x− 1
√
x− 2 = 1. (5)

GeoGebra struggles with equations that have infinitely many solutions. As an
example, try to solve the equation

√
x− 1 = 1 +

√
x− 2

√
x− 1. (6)

A solution of equation (6) is any real number x ≥ 2. This can be verified via a
graph of the function f(x) = 1 +

√
x− 2

√
x− 1−

√
x− 1. See Figure 4.

1 2 3 4

1

2

0

Figure 4: The graph of the function f(x) = 1 +
√
x− 2

√
x− 1−

√
x− 1

One needs to be careful also when solving equations with parameters since
GeoGebra does not offer a discussion regarding the parameters. As an example,
try to solve equation

1

x+ a+ b
=

1

x
+

1

a
+

1

b
. (7)

GeoGebra returns roots x = −a, x = −b. Even when checking solutions, it
attempts to persuade us that it is correct. However, it is sufficient to move ev-
erything to the right-hand side and then factoring it, for example use command



Factor(0=1/x+1/a+1/b-1/(x+a+b)). After this arrangement, a discussion regarding the
parameters can be achieved relatively easily.

When dealing with logarithmic equations and inequalities, it is also recom-
mended to solve mixed systems, similarly to how it was done with irrational
equations. Try to solve equation

log10(x− 2)− log10(x− 1) = 1. (8)

Sometimes it is needed to help oneself with a command Simplify. For instance,
when solving inequality (

1

2

)log2(x
2−1)

< 1 (9)

using command Solve({Simplify((1/2)^(ld(x^2-1))<1),x^2-1>0},x) one gets {−
√

2 > x, x >√
2 }. That is the list of intervals the union of which defines the solution set for

inequality (9).

A problem with domain also appears when solving trigonometric equations,
for instance

1− cos(2x)

sin(2x)
= 0. (10)

Equation (10) is solved using command Solve({(1-cos(2x))/sin(2x)=0,sin(2x)!=0},x).
Even bigger problem GeoGebra encounters with equation

√
cosx− 1 = 0. (11)

This is because the domain of equation (11) consist of isolated points. Equation
(11) is solved using command Solutions(sqrt(cos(x)-1)=0).

3 Conclusion

GeoGebra is not perfect and that is fine. It will not do everything instead of
us. To get the correct answers, one must first know something about Mathematics
and also needs to know how to use it.
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The usage of graphs in economics

Erika Fecková Škrabuľáková1 and Elena Grešová2

Abstract: In this paper we were interested in the usage of graphs and graph-
like structures in graph theory means in economics. We discuss their utilization in
many different situations and point out to the row of economics related problems
that found their solutions via applications of graph theory tools or concatenation
of graph theory aids and other tools of mathematics.

Although the aim of this small overview contribution is to highlight the width
range of applications of graph structures in economics, we also point out to their
other applications outside mathematics.

Keywords: Application; Economics; Graph.

Mathematics Subject Classification: 05C90, 94C15.

1 Introduction

Mathematics and economics are closely related. In order to acquire gene-
ral knowledge of economics or financial literacy, the wisdom from mathematics
is necessary [6]. The results of several studies confirm that the importance of
mathematics both for study economics and solve practical tasks of economy grows
[16], [1]. Beside mathematical statistics, actuarial mathematics and associative
calculus, one of the strong branches of mathematics with widespread utilization
in economics is the graph theory.

In this paper we aim to present a short overview on usage of graphs and graph-
like structures in economics. The graphs are understood as structures in graph
theory means - representations of set of points - vertices, and a set of curves -
edges.

1Institute of Control and Informatization of Production Processes, Faculty BERG, Technical University of
Košice, Boženy Němcovej 3, 042 00 Košice, Slovakia, E-mail: erika.feckova.skrabulakova@tuke.sk
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A graph G is understood as an ordered pair G = (V (G), E(G)) of a finite
set V (G) = {v1, v2, . . . , vn} of vertices, and a set E(G) = {e1, e2, . . . , en} of
unordered pairs of vertices - the set of edges. The relative positions of points
representing vertices and curves representing the edges have no significance [4].

2 The versatility of graph theory

Graph structures called trees are very often used in economics. Trees are
defined as connected graphs on n vertices and n − 1 edges and a graph G is
said to be connected iff there exists a path - the sequence of different consecutive
vertices and edges, between every two vertices of G. Closed path or a cycle Cn
(n > 3) is a graph structure of consecutive n vertices and n edges where the last
vertex is identical to the first one. A simple graph that does not contain any cycle
Cn (n > 3) as a subgraph is called acyclic. Hence, every tree is an acyclic graph.

For classification and prediction in economics are often used decision trees (see
e. g. [24], [10], [31]). An example of a decision tree used for a mortgage applica-
tion assessment (see [6]) can be find at Figure 1. Similar trees are used to predict,
analyse and explain the relationship between measurements about some item and
its target value. They can be used as simple models that allow automatic learning
in which costs can be also included. Graph algorithms allow automatically prune
these trees and their complexity can be controlled [24]. Thanks to simple repre-
sentation, the decision trees offer high classification accuracy in a simple, reliable
and effective way.

Figure 1: Decision tree used for the mortgage application assessment

Mediating the application of trees as graph structures in economics, the whole
graph representation of a problem has not necessary being interpreted as a tree (or
a forest of trees). Sometimes it is searched for subgraphs with prescribed features



some of which classify these subgraphs into the family of trees. For example the
minimum spanning tree was utilized for portfolio analysis in [25]. The dynamic
asset tree was created from the correlation matrix consisting of stock returns. In
[25] a complex and worthwhile economic system representing the stock market
was established. The progression of the proposed tree was described in a time
horizon. During a stock market crisis its retraction was clearly observed.

For a representation of probability distribution over a set of random variables
the Bayesian dependence networks can be used. Bayesian dependence networks
are represented by directed acyclic graphs. Directed graph or a digraph is a graph
where each edge has an assigned orientation. Formally, a digraph D is an ordered
triple (V (D), E(D), ψD), where V (D) is a nonempty set of vertices, E(D) is a set
of arcs (disjoint from V (D)) and ψD is an incidence function that associates with
each arc of D an ordered pair of (not necessarily distinct) vertices from V (D).
(For the notation and graph theory terminology we refer to [4].)

Considering the Bayesian dependence networks, the vertices of these graphs
correspond to domain variables, while the arcs defining a set of independence as-
sumptions. They have many applications in economics. For example, the Bayesian
classification technique and ordered regressions were used for the analysis of work-
related stress determinants and their comparison in cross-cultural context in [2].

Graph theory found its applications considering commodity markets, as well.
For instance, the particularly market integration with support of graph theory
has been studied in [20] where the systemic risk was analysed. Authors took
into account twelve years long time period in which on the basis of daily futures
returns of the specific market bonds were inspected. These bonds were related to
the particular commodities as well as the commodity complex and other assets
with financial background.

The implementation of graphs in business was confirmed by Haigh and Bessler
in [17] over their research tackling price discovery between spatially separated
commodity markets and the transportation market connecting them with each
other. Findings pointed out that transportation rates were crucial in the price dis-
covery procedure lending support for the movements concerning exchange traded
barge rate futures contracts.

The methodology based on causal analysis with, inter alia, graph theory ground-
ing was proposed by [21]. The presented approach served for more feasible ex-
ploration of the economy’s sectors. The point was to simplify the identification
of the relationships between variables that constitute particular sector. The de-
velopment lied in enabling the transformation of a great number of data into a
directed graph.



The big advantage of the graph theory is that thanks to its simple yet powerful
aids we are able to better understand the variables and their relative interdepen-
dencies. This is often used in a risk mitigation. The risk mitigation environment
can be, for example, quantified and presented via a numerical index and studied
via graph theory tools accompanied by matrix methods (see e. g. [8]).

The relation between the political uncertainty and the firms’ financing deci-
sions was studied in [22]. Authors of this paper established a new qualitative
on heuristics-based model and derived a transitional graph to study all possible
past/future behaviour of the examined variables.

Markets and systemic risk were investigated in [32], as well. The financial sys-
tem was interpreted here as a graph in which each edge is given a numerical weight
which typify an extensive network of cooperating agents and flow of information.
Daily returns of selected stocks were examined in a fifteen year period. The fo-
cus was put on evidence about forming a financial “crash hallmark” by matching
changes in Ricci curvature.

The input-output analysis represents an extensive area of the economics where
graph theory is applied, as well. Some conventional concepts related to stated
analysis were examined through research of [11]. Specifically, autonomous sets, in-
decomposable matrices and fundamental products. Selected suggestions on graph
theory were adjusted and put in an application for the given concepts. This inves-
tigation comprised several steps: digraph definition linked to the economic system,
reflection concerning graph’s topological properties with regard on mentioned eco-
nomical concepts and algorithms suggestion. What is more, there appeared also
an instance from a real-life economic practice.

Another study dedicated to the input-output analysis in the graphs context
was prepared by Halkos and Tsilika in [15]. Authors scrutinized trade activities
pertaining to numerous sectors and regions from the networks point of view. The
enforcement was put on reparation of the structure architecture connected to the
interrelations. The outputs visualization was realized for the purpose to illustrate
the quantity of trade links, the interaction of the trading partners as well as the
density of interrelations. Assessing the vertex degrees was performed with regard
on measuring the density and connectivity.

Graphs serve a simple yet worth tool for exploring graph-based structural pat-
terns, linkages and their topological properties [34]. The dependence between
different economic indicators and their effect on countries economy [10], the rela-
tions inside and outside distinct organizations [14] as well as the structure of the
control network of transnational corporations and effects on the global market
competition [35] and many other similar tasks [23] can be modelled and studied



based on the topological structure of respective graph models. These relations
(represented by edges of a graph) between the objects of interests (represented by
vertices of the graph) may not be only highlighted but also studied and analysed
based on graph colourings. A k-edge colouring of a graph G(V (G), E(G)) can be
understand as a partition (E1, E2, . . . , Ek) of the set E(G), where Ei denotes the
(possibly empty) subset of E(G) assigned colour i [4].

An edge-colouring of digraphs was used e.g. by processing of economic data
with a view to their subsequent comparison in [10]. Authors discuss the relation
between the colouring and incidence function of oriented graphs with the corre-
lation among the economic parameters and show that graphs are worth to derive
gathered knowledge of economic information. Graphs are used here in order to
compare macroeconomic parameters for selected countries (see Figure 2) such as
the gross domestic product, quality of life, EU direct investment positions, flows
and income, and net export.

HR DK

EE

LV

SK

LT IE

Figure 2: The digraph related to comparing the gross domestic product of selected European
Union countries, namely: Croatia (HR), Denmark (DK), Estonia (EE), Ireland (IE), Latvia
(LV), Lithuania (LT), and Slovakia (SK)

Although methods based on colouring of graphs that lead to a solution of eco-
nomic problem are quite rarely used in economics, one can still find some other
examples. Beside the utilization in [10], one can find another application in e.g.
[9], where the analysis grounded on economic target supported by a special kind
of graph colouring (palette colouring) was processed. In this case the stated eco-
nomic target represent cost saving by organising events in a large exhibition hall,
but similar approach to the one presented in [9] can be used in many other situ-
ations.



Regarding the cost saving, one can easy find several applications of graph
theory - see [7]. At the other side, modelling by graphs is very popular not only
in economics, but also in many different areas such as engineering, medicine or
biology (see e.g. [19], [10], [28], [29], [30], [36], [37]). Graphs-like structures are
very likely used in order to describe the consequences, cause-effect relationships
and simulation flows (see e.g. [12], [26], [11]). They have wide applications in
logistic especially when dealing with problems of a traffic flow - see e.g. [13],
where the study of transport networks in sustainable smart cities is provided.
Another example dealing with sustainable development can be find in [3].

The corporate sustainability performance can be studied via graphs too. For
instance, the social, economic, environmental, and corporate governance subsets of
composite sustainability indicators have been studied in [5]. In the paper authors
used models based on the fuzzy similarity graphs and evaluate the resulting five
similarity graphs with significantly different topological structures.

The list of applications of graphs in economics is much longer than the one
presented above. Mentioned examples provide only a small portion of it.

3 Conclusion

The solution of many economic problems lead themselves naturally to a graph.
Some of them had been mentioned above.

In this paper we have shown that graphs are worth not only by reasoning in
order to make verbal quantifiers more accurate, and for gathering some economic
information in a simple and illustrative way. On a number of examples we have
demonstrated their utilization as powerful aids for solving many problems related
to different tasks of economy. We have exhibit their usage by classification and
prediction, by risk management and cost saving, by modelling and better un-
derstanding the variables and their relative interdependencies, by input-output
analysis, by studying the consequences and cause-effect relationships. We have
shown that graphs are worth for exploring graph-based structural patterns, link-
ages and their topological properties by which some methods based on colourings
of graphs might be of use, as well.

Although the above list of applications is long, it is still far from being complete.
This fact underlines the widespread utilization of graphs in economics.
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Study of mathematics and economics:
View from the other side

Elena Grešová1 and Erika Fecková Škrabuľáková2

Abstract: In this paper we were interested in the opinion of students of non-
mathematical, non-economic fields of study on mathematics and economics and
the usage of knowledge from these disciplines in practice. We seek to find the
connection between the practice and teaching of mathematics and economics. We
consider the research results being important indicators of the teaching process
reflection. The aim is to comprehend the students’ point of view and provide
feedback. In order to determine students’ beliefs a questionnaire technique was
applied. The key claims were formed on the basis of analyzing the gathered data
and their further matching. In order to better process the obtained information,
all the data were normalized. The grounds of uncovered findings were examined,
too. This paper presents a view on contemporary teaching and offers suggestions
for making improvements in the studied area.

Keywords: Economics; Education; Mathematics; Student’s perspective.
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1 Introduction

Most of the universities in Europe arrange mathematics as one of the compul-
sory subjects that students need to pass during the study, no matter what their
field of study is. Thus, mathematics unnecessarily becomes a necessary turning
point in the path to successful graduation. The required status of mathematics
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evokes negative emotions towards it and distorts, its real need in practice. There-
fore, we were interested in the opinion of students of non-mathematical fields of
study on mathematics and the usage of knowledge from it in practice. As the fun-
damentals of economics are taught at many universities in many different forms for
students of non-economic disciplines, we were also interested in the students’ view
on the study of these subjects and the use of acquired knowledge from economics
in practice. In order to get this information, we contacted the students with a
short questionnaire. In this article, we analyze the information obtained from in
total 150 students of Technical University of Košice and confront the results in a
subject-matter context.

2 Literature overview

Research in the field of linking teaching with practice was carried out by Don-
ckels [4]. The central idea was to support entrepreneurial talents already in the
educational process. The author emphasized the need of university’s proactive
approach in developing student’s potential, which is a direct benefit to the coun-
try’s economic growth. A survey discussing education and business links was
accomplished. What is very significant, attention was paid not only to the atti-
tude of government institutions, businesses or schools on this issue, but also to
the attitudes of the students themselves. The resulting benefits of the analysis of
the survey results are proposals for concrete solutions.

Students view on mathematics teaching at university has been the subject of
research interest of Dalby et al. [3]. The results showed that students would
appreciate a greater degree of synthesis between school mathematical tasks and
practice. They require more detailed information on the mathematical content
of education and better orientation in the areas of practical mathematics usage.
About 32 % of respondents held these views. Approximately every third student
asked for more use of so-called "linking maths" - connecting mathematics that
shows ways of solving problems while selecting examples from practice.

Further research of Flegg, Mallet and Lupton [5] focused on the students’ at-
titudes to linking their study with practice. Authors concentrated on technical
disciplines. More precisely, they focused on engineering fields which they see as
an application of science and mathematics to design and build diverse projects
serving society. Authors followed the students’ opinions on the use of various
mathematical techniques for a wide range of application alternatives (see also
[10]). In addition to using the acquired information to successfully master math-
ematics as one of the school subjects that they have to complete, or using the
above mentioned techniques as a subsidiary tool in manifold technical subjects, it
was mainly possible to tackle real situations and problems. Several improvements



have been identified that have been designed to be implemented in the curricu-
lum. They were related to the overall significance of mathematics in the context
of engineering disciplines, future studies, or the effectiveness of solving practical
tasks.
As evidenced by Jacques’s book [6] mathematical knowledge is necessary in order
to acquire financial literacy and general knowledge of economics. Jacques’s book
belongs to the many works aimed at gaining and improving the mathematical
basis for students of economics, business or management. A clear correlation was
found between the results of successful completion of economic subjects at uni-
versities and the knowledge of mathematics [2]. The importance of mathematics
for the study of economists was confirmed by research of Alcock, Cockcroft and
Finn [1]. Their study suggests that students who have completed more advanced
mathematical subjects showed a significantly higher success in economics courses
with practical focus.

An interesting fact is that students tend to overestimate their knowledge of
mathematics. The results of studies by Pajares and Miller (see [7] and [8]) have
shown that up to 86 % of high school students and 60 % of undergraduates
tend to overestimate their mathematical knowledge. Only one in twenty high
school students and one in five university students realistically evaluate their
mathematics ability. The overly positive perception of mathematical preparedness
by students on the basis of their self-assessment was also demonstrated by Wandel
et al. [9].

3 Results and discussion

In this paper we present the results of a questionnaire of in total 150 students
of Technical University in Košice, Košice, Slovakia, whose major subject is nei-
ther mathematics, nor economics or management, but for whom these subjects
appeared during their study in different forms in several university or high school
level courses. In the questionaire we asked in total 6 questions {Q1, Q2, . . . , Q6},
namely, whether mathematics/economics is useful in practice, what is it useful
for and whether the students encountered mathematics/economics at all. As stu-
dents were encouraged to create their answers themselves, they were allowed to
give more than one answer to each question. Therefore, in order to better com-
pare the data, all the obtained answers were grouped into several sets according
to their similarity and we counted the number of answers associated with each set
si and the total number of answers for each question qj; j ∈ {1, 2, . . . , 6}. The
data were normalized via formula:

pij =
si
qj
· 100.



Thus, we obtained the normalized values pij of answers to qthj question Qj belong-
ing to ith set indicated in percentage.

Our research shows that the respondents of the Technical University of Košice,
Košice, Slovakia, perceive to the same extent the personal need for economics from
the perspective of the development of cognitive functions and from the perspective
of solving various situations of everyday life (see Figure 1). Respondents largely
understand the necessity for knowledge of economics for use in their employment.
They do not perceive this need only in the context of passing school. Likewise,
no respondent said he did not know what economics was for.

Figure 1: What is economics for?

The interviewed students perceived a personal need for mathematics, especially
from the perspective of development of different cognitive functions - see Figure 2.
Roughly one third was aware of a need for mathematics in order to deal with
divergent situations of everyday life, of which every second saw these situations
from a financial perspective. Every fifth student perceived mathematics as a
subject needed to successfully complete their schooling. Up to 6 % of respondents
were unable to find the answer to the question “What is mathematics for?”. What
is sad, 2 % of respondents even said that it is useless. In contrast, only 3 %
recognized its real application in practice.

Also interesting is a comparison of the answers to the question “What is math-
ematics for?” between the students of first and second degree of university study.
Bachelor degree students, Group B, understand that mathematics is for solving
manifold situations of everyday life (see the left-down part of Figure 2). They
argue with daily situations in stores where they usually make some simple cal-
culations, hence, they see the utilization of basic mathematics. The application



of higher mathematics they interconnect more or less only with the development
of multiple cognitive functions. A large amount of bachelor degree students see
mathematics only as a compulsory subject on the way to successful termination
of the university. No one of the Group B students answered that mathematics
is useful for application in practice. At the other side, in total 8 % of the stu-
dents of this group answered that they have no idea what they need mathematics
for or, that mathematics is useless. A similar situation occurred in the Group I
(engineer or master degree students), where 8 % of students did not know what
is mathematics for. On the other hand, we can observe a decreased number of
answers in the set of successful termination of school, and in increased number of
answers in the set of application in work (see the right-down part of Figure 2).
In the Group I the highest percentage of answers was associated with the set of
development of cognitive functions.

Figure 2: What is mathematics for?



Where do I meet... mathematics? [%] economics? [%]
Everywhere / Almost everywhere in everyday life 58.47 54.67
At university 30.26 0.00
At work 9.74 40.00
Hardly anywhere 0.51 5.33
I do not know 0.51 0.00
It is useless 0.51 0.00

Table 1: Where do I meet mathematics/economics?

The most significant share of answers to the question “Where do I encounter
mathematics?” respectively “Where do I meet economics?” has the answer “Ev-
erywhere / almost everywhere in everyday life.” (see Table 1). The second most
significant share in the case of mathematics was the answer: “At school.” It is
interesting to note that no student in the case of economics reported this option.
On the other hand, the second most presented answer to the question “Where
do I meet economics?” was the answer “At work.” This occurred in up to 40
% of cases. Only less than 10 % of students recorded this answer in the case of
mathematics. Since none of the students indicated that economics is inapplicable
in practice, respectively does not know where it is usable, and only a few students
have indicated such an answer in the case of mathematics, it can be stated that
students are aware of the interconnection of these subjects with real life situa-
tions. Students approximately equally perceived meeting with mathematics and
economics in everyday life, while the first one was often perceived financially, so
through economically related aspect.

On the question “Is economics useful in practice?” 85 % of respondents gave a
clear positive response. The remaining 15 % saw its usability as conditioned by
the type of activity performed, the type of employment - see Figure 3.

Figure 3: Is mathematics/economics useful in practice?



Although 70 % of students considered mathematics useful in practice and 25 %
saw it depending on the profession, there were still 4 % of students that considered
it useless. This is very alarming, as some of these students learn the mathematics
a couple of semesters at their university. Despite that, they do not see its practical
usage.

4 Conclusion

In this paper we were interested in the opinion of students of non-mathemati-
cal, non-economic fields of study on mathematics and economics and the usage of
knowledge from them in practice. We consider the research results to be important
indicators of the teaching process reflection. They provide feedback, a student
perspective on the issue of educational curriculum.

The positive result was that many students were aware of the need for mathe-
matical and economic education not only for the development of memory, thinking
and other cognitive functions, but also for its use in solving various situations in
life. Undergraduate students did not perceive mathematics as a discipline neces-
sary for their own practice. At the other side, in the case of economics they could
see the connection between the knowledge obtained in the educational process
and its use in work and daily life. Yes, they saw this connection in the case of
mathematics as well, but to a lesser extent and often only in financial terms. Very
often they limit the usage of mathematics only to the school environment.

The questions of general applicability of mathematics and economics in prac-
tice were in most cases answered positively, although the difference between the
students’ perception of the need for mathematical and economic education was
shifted to the detriment of the former. This points out the need for incorpora-
tion of subjects that use mathematical knowledge in solving practical tasks to the
university students’ curriculum. The examples of practical use of mathematics
should not be based solely on the financial literacy elements, or use in physics.
They need to be demonstrated on a diverse spectrum of real situations. If we want
to make students see the meaning of acquiring specific knowledge of mathematics,
even of the higher one, we need to develop not only knowledge, but the practical
abilities they see in the real world, as well.
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Entropy concept: A mathematical revision

Zuzana Ontkovičová1

Abstract: In this paper, we deal with the commonly used concept of entropy
from a mathematical point of view. We revise all the important and known facts
about Shannon-Khinchin axioms and the formulation of the classical Shannon en-
tropy, as well as its one-parameter generalizations with the corresponding axioms.
We provide an improved and proper derivation of the Shannon entropy formula in
more details with a clarification of using the axioms. Moreover, we describe some
real-life figurative applications from physics and the information theory with an
explanation for better understanding the concept.

Keywords: entropy; Shannon-Khinchin axioms; one-parameter generaliza-
tion.

Mathematics Subject Classification: 28D20, 94A15, 94A17.

1 Introduction

The concept of entropy was developed between 1872 and 1875. It originated in
physics and was first mathematically described by Ludwig Boltzmann in thermo-
dynamics. Then Josiah Gibbs improved this formula in order to be more precise
in describing real phenomena. Later, with the development of the information
theory, there was a need to mathematically define entropy more rigorously. In
1948, Claude Shannon in [5] introduced a revised entropy for applications in this
field and he also postulated axioms, which should uniquely describe this entropy.
However, the correct and precise formulation of the axioms was given after nine
years in [4] by Aleksandr Khinchin.

Even though entropy is now known and studied for a long time, it can be
considered as the basic concept for some new and innovative approaches in the

1Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 040 11
Košice, Slovakia, E-mail: zuzana.ontkovicova@student.upjs.sk
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probability theory and informatics. Many algorithms and methods are based on
the original entropy and its generalizations.

Main contribution of this paper, besides organized revision of the known facts
in the area, is thorough understanding of the mathematical background as well as
the whole concept of entropy. That is why we give some examples from physics
and the information theory so that its interpretation is clearer and we also highly
focus on a derivation of the entropy formula, where we include all the details and
necessary tools.

2 Interpretation

2.1 Physics

In physics, entropy appears in statistical physics and describes the degree of
disorder in a system [2]. It links together microscopic and macroscopic charac-
teristics of it in a way that entropy is proportional to the number of all possible
microscopic configurations (orderings) of molecules in the system while an ex-
ternal observer does not notice any difference of the overall macroscopic result.
Therefore entropy is connected with uncertainty in the molecular configuration.

According to the third law of thermodynamics, entropy of a closed system
never decreases, so it is constant (when reaching equilibrium) or increasing. That
is why we can determine the direction of all processes in nature. So that only
knowing the entropy values for two different states of some system, we can derive
their order.

Consider an arbitrary room in an arbitrary house. The longer we use it, the
messier it gets, so that its entropy is increasing. However, when we decide to clean
the room, does the entropy decrease? The right answer is no. Even though it is
less messy, the person cleaning is tired and sweaty, so his entropy has increased.
It means that the entropy of the entire closed system which contains the whole
room as well as the person has not really decreased.

2.2 Information theory

In the information theory, entropy is connected with the degree of uncertainty
or the amount of freedom one has choosing parameters in creation of a message,
see [5].

Consider a system which consists of letters

A B C D E F G H I J K L M N O P R S T U V W X Y Z.

When someone chooses a letter from this system, how many questions (with an-
swer yes or no) do you minimally need to find out, what is the chosen one? You



can start guessing the letter randomly or from the beginning, but there are more
efficient ways. One of them is called binary search and is based on dividing the
system into two subsystems, then the right subsystem into two sub-subsystems
and so on. So in this case, you will need up to five questions.

Now assume another system containing

A A A A A A A A A A A A A A A A A A A A A A A A A,

which has as many letters as the first one. How many yes-no questions do you
need now? Apparently, you know the answer even without asking.

As we see according to the examples, entropy is proportional to the number
of questions. The more questions are needed, the greater information the system
contains, the higher the uncertainty is and the higher the entropy is.

3 Axioms

Before presenting the axioms, there is a necessity to understand some basic
ideas in the probability theory. Special types of probability used in this paper are
joint (marked pij), which describes probability of two (or more) different events
occurring together/at the same time and marginal (marked pi•), which describes
probability of a single event occurring unconditioned on any other. The following
table shows the idea of creating marginal probabilities from the joint ones and
then we also write relations between them in a mathematical way.

p11 p12 p13 . . . p1m1
→ p1•

p21 p22 p23 . . . p2m2
→ p2•

. . . . . . . . . . . . . . . . . . . . .
pn1 pn2 pn3 . . . pnmn

→ pn•

For any i = 1, . . . , n and j = 1, . . . ,mi it is satisfied, that

pij ≥ 0, pi• =

mi∑
j=1

pij,

n∑
i=1

pi• = 1, (1)

where in each row of the table, there is at least one non-zero element, so

(∀i ∈ {1, . . . , n}) (∃j ∈ {1, . . . ,mi}) pij > 0,

and it means that all marginal probabilities are always positive (pi• > 0).

As was mentioned in the Introduction, the proper way of defining Shannon
entropy is given by Shannon-Khinchin axioms. These axioms can be separated
into two different groups. The first one is natural, mainly derived from physics,
because of real properties of the physical quantity they describe (maximality and
weaker formulation of additivity). The second one is mathematical, because of the



uniqueness of the entropy formulation and its simplicity when using in calculations
(continuity and expandability).

Here, we consider Shannon-Khinchin axioms according to [7], where

∆n =

{
(p1, . . . , pn) : (∀i) pi ≥ 0,

n∑
i=1

pi = 1

}
. (2)

There exists only one class of functions Sn (n is related to number of elements in
the argument), which satisfies following properties:

SK1 Continuity
For any n ∈ N, function Sn(p1, . . . , pn) is continuous with respect to (p1, . . . , pn) ∈
∆n.

SK2 Maximality
For given n ∈ N and (p1, . . . , pn) ∈ ∆n, function Sn(p1, . . . , pn) takes its
largest value for pi = 1

n (i = 1, 2, . . . , n)

Sn(p1, . . . , pn) ≤ Sn

(
1

n
, . . . ,

1

n

)
.

SK3 Shannon additivity
Using marginal and joint probabilities as in (1) and (p1, . . . , pn) ∈ ∆n, fol-
lowing equality holds

S∑
imi

(p11, . . . , pnmn
) = Sn(p1, . . . , pn) +

n∑
i=1

piSmi

(
pi1
pi•
, . . . ,

pimi

pi•

)
.

SK4 Expandability
Assuming (p1, . . . , pn) ∈ ∆n, adding an event with zero probability does not
change the value

Sn+1(p1, . . . , pn, 0) = Sn(p1, . . . , pn).

According to these four axioms, the unique formulation of the entropy is given as

Sn(p1, . . . , pn) = −k
n∑
i=1

pi ln pi,

and is called Shannon entropy [5], where k is a positive constant. In physics k
is called Boltzmann constant with a value k = 1,38 · 10−23m2 kg s−2K−1. In the
information theory k = 1, because it is just a reference value. We also need to
use a convention for the case where pi equals zero, so that 0 · log 0 = 0.

From the formulation, some properties of the entropy can be derived, such as
symmetry of its arguments (any permutation of probabilities will not change the



value), concavity, non-negativity and its equality to zero if and only if there exists
an event with probability one.

Now, we will give a derivation of the entropy formula, according to [5]. Let us
define Su

(
1
u ,

1
u , . . . ,

1
u

)
= A(u) as the entropy of u events with the same proba-

bility. If we consider bc independent events, using the additivity axiom (SK3) we
can write

A(bc) = Sbc

(
1

bc
, . . . ,

1

bc

)
= Sb

(
1

b
, . . . ,

1

b

)
+

b∑
i=1

1

b
Sbc−1

(
1

bc−1
, . . . ,

1

bc−1

)
= A(b) + A(bc−1).

By induction we obtain equation

A(bc) = cA(b). (3)

Consider2 t, n, s ∈ N, m ∈ N ∪ {0}. Now we will take tn events. For every n we
can find m, such that for every s, s ≥ 2 it is true that

sm ≤ tn < sm+1. (4)

Taking the logarithm of (4) and by additional changes we get

m

n
≤ log t

log s
≤ m

n
+

1

n
, i.e.,

∣∣∣∣mn − log t

log s

∣∣∣∣ < 1

n
. (5)

Moreover, from the maximality (SK2) and the expandability axiom (SK4) applied
to (4) we obtain

A(sm) ≤ A(tn) ≤ A(sm+1).

Expanding as in (3) we get A(s) ≤ nA(t) ≤ (m + 1)A(s) and, by the same
technique as above, we can write

m

n
≤ A(t)

A(s)
≤ m

n
+

1

n
, i.e.,

∣∣∣∣mn − A(t)

A(s)

∣∣∣∣ < 1

n
. (6)

Using together both results (5) and (6), we obtain∣∣∣∣A(t)

A(s)
− log t

log s

∣∣∣∣ ≤ 2

n
.

Since n is arbitrarily big, it follows

A(t)

log t
=
A(s)

log s
,

2entropy is associated with big numbers (representing molecules or bits of information) so we do not need
to assume small ones



and from this formula it is obvious that A(t)/ log t is a constant function and

A(t) = k log t, (7)

where k is a positive constant.
Assuming the additivity axiom (SK3), we use (7) for the equiprobability dis-

tribution of considered events on the left hand side, where

p11 = p12 = · · · = pnmn
=
(∑n

j=1mj

)−1
,

S∑
imi

(p11, . . . , pnmn
) = A

(
n∑
j=1

mj

)
= k log

(
n∑
j=1

mj

)
,

as well as in the second expression on the right hand side, where pimi

pi•
= 1

mi
, because

pi1 = pi2 = · · · = pimi

Smi

(
pi1
pi•
, . . . ,

pimi

pi•

)
= A(mi) = k logmi.

Replacing them in the original axiom we get

k log

(
n∑
j=1

mj

)
= Sn(p1, p2, . . . , pn) + k

n∑
i=1

pi logmi.

Now, using
∑n

i=1 pi = 1 and by some equivalent changes, the entropy equals

Sn = k

[
n∑
i=1

pi log

(
n∑
j=1

mj

)
−

n∑
i=1

pi logmi

]
= k

n∑
i=1

pi log

(∑n
j=1mj

mi

)
.

Thanks to the continuity axiom (SK1) we can describe probability of the i-th
event by formula pi = mi∑n

j=1mj
and get the right formulation of the entropy

Sn = k
n∑
i=1

pi log

(
1

pi

)
= −k

n∑
i=1

pi log pi. �

4 Other types of entropy

Because of the progress in science there was a need to define new types of
entropy. They should have the same basic properties as Shannon’s and moreover
better describe real phenomena. The most common and used entropies of this
type are Rényi entropy [1] (used e. g. in ecology and cryptography) and Tsallis
entropy [3], [6] (used e. g. in image processing and plasma physics). They both
are one-parameter generalizations of Shannon entropy.



4.1 Rényi entropy

If we consider ∆n as in (2), Rényi entropy is defined as

SRq (p1, . . . , pn) =
k

1− q
ln

(
n∑
i=1

pqi

)
.

It can be easily shown that, in the limit q → 1, it reduces to Shannon entropy
(using L’Hospital rule), i.e.,

lim
q→1

SRq = k lim
q→1

[
ln (
∑n

i=1 p
q
i )

1− q

]
= k lim

q→1

∑n
i=1 p

q
i ln pi

−
∑n

i=1 p
q
i

= −k
n∑
i=1

pi ln pi = Sn.

The same maximality property as for Shannon entropy also holds, so the maximum
is attained when all the probabilities are equal to pi = 1

n . They also share the
continuity and the expandability property. Moreover, it is easily seen that this
entropy is always non-negative (minus sign and a negative logarithm of the value
in (0, 1)).

4.2 Tsallis entropy

Using ∆n as in (2), definition of Tsallis entropy reads as

STq (p1, . . . , pn) =
k

q − 1

(
1−

n∑
i=1

pqi

)
.

Since Tsallis and Rényi entropy have very similar formulations, we can find a
connection between them in the form

STq =
k

q − 1

[
1− exp

(
(q − 1)SRq

k

)]
.

Because of this equation, it is evident that Tsallis entropy is a monotone function
of Rényi entropy and any maximum of Tsallis entropy will also be a maximum of
Rényi entropy, and vice versa. Moreover, it reaches its maximum for the equiprob-
ability distribution.

Tsallis entropy tends to Shannon entropy in the limit q → 1, since

lim
q→1

STq = k lim
q→1

[
1−

∑n
i=1 p

q
i

q − 1

]
= k lim

q→1

−
∑n

i=1 q p
q
i ln pi

1
= −k

n∑
i=1

pi ln pi = Sn.

Non-negativity of the entropy can be easily verified (value in the brackets is always
non-negative).



4.3 q-generalized entropy

From a mathematical point of view, it is also interesting to look at one-
parameter entropies in general. The main reason is that they have similar char-
acteristics and also satisfy three out of four Shannon-Khinchin axioms. The only
difficulty is with the additivity, so there should be a new formulation for this prop-
erty. Moreover, this generalization should tend to the original Shannon additivity
in the limit.

Such a generalization is called q-generalization and it contains axioms for
a function φ(q) as well as axioms for the whole entropy, which are similar to
Shannon-Khinchin axioms [7], [8]. Using them, we can uniquely determine one-
parameter generalization of Shannon entropy as

SGq (p1, . . . , pn) =

1−
n∑
i=1

pqi

φ(q)

with q ∈ R+, where φ(q) satisfies properties (i) – (iv):

(i) sgnφ(q) =

{
+1, for q ≥ 1,

−1, for q ∈ (0, 1),

(ii) φ(q) is differentiable with respect to q,

(iii) lim
q→1

dφ(q)
dq = 1,

(iv) lim
q→1

φ(q) = φ(1) = 0 with φ(q) 6= 0 fo q 6= 1.

These axioms guarantee that the formulation meets the original Shannon entropy
in the limit q → 1, which can be seen applying L’Hospital rule.

The q-generalized axioms consist of four conditions (for simplification we will
not write number of elements in the argument of the entropy):

qSK1 Continuity
SGq is continuous in ∆n.

qSK2 Maximality
For any n ∈ N and any (p1, . . . , pn) ∈ ∆n

SGq (p1, . . . , pn) ≤ SGq

(
1

n
, . . . ,

1

n

)
.

qSK3 Generalized Shannon additivity
Using marginal and joint probability from (1) and (p1, . . . , pn) ∈ ∆n, follow-
ing holds

SGq (p11, . . . , pnmn
) = SGq (p1, . . . , pn) +

n∑
i=1

pqiS
G
q

(
pi1
pi
, . . . ,

pimi

pi

)
.



qSK4 Expandability
For (p1, . . . , pn) ∈ ∆n

SGq (p1, . . . , pn, 0) = SGq (p1, . . . , pn).
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A method to identify states of the
experimental phases for the process of the
transport belt tensioning and relaxation

Beáta Stehlíková1, Vieroslav Molnár2, Gabriel Fedorko3

and Gabriela Bogdanovská4

Abstract: In this paper we present a method which was applied in order to
identify states of the particular experimental phases for the process of the trans-
port belt tensioning and relaxation. The test equipment of the hexagonal idler
housing of the pipe conveyor emitted tension force of conveyor belt to the size of
contact forces which are induced by the balled conveyor belt on the guide rollers.
Using our method to identify the state tension and state relaxation enables us to
reduce useless data variability. We discuss the reliability of the results obtained
via experimental approach compared to the mathematical - theoretical one. The
described method is based on the differences of tension force time behaviors. The
method is applied during the processing of data after the measurement before
estimate of relations, functions, rules between tension forces and contact forces.
All measurement results processed by this method can be used in the future to
analyze the significance of factors, model parameter estimates, and more.
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1 Introduction

Mathematics plays a significant role in various phases of engineering research,
see e.g. [4]. Mathematical tools help to derive formulas and relations that describe
the behaving of real objects. The question is the extent to which these formulas
correspond to the reality. In this paper we aim to use the experiment in order
to identify the state of experimental phases for the process of the transport belt
tensioning and relaxation and discuss the reliability of the results obtained by the
experiment.

Belt conveyor is among the most important tools for the transportation of
bulk material [12]. Pipe conveyors are considered to be the most perspective
system for transportation of bulk and lump materials, but various factors might
have an impact on their functionality - see e.g. [11]. The determination of forces
in the conveyor belt is very complicated and the currently used procedures are
inaccurate because the conveyor belt is a hyperplastic material with orthotropic
behavior [5]. The forces are therefore determined by experimental measurements.
At the Technical University of Košice we designed the test equipment of the
hexagonal idler housing of pipe conveyor. The concept of it represents the section
of pipe conveyor in which the conveyor belt is transformed to the pipe form. The
conveyor belt as a physical model is an object with action of tension force and at
the same time it takes the initiative of the contact force formation.

Although the theoretically deduced formulas describe the situation at various
positions of the pipe conveyor, experimental results from measurements on the
device can bring better insight into the actual distribution of forces in the pipe
conveyor.

2 Literature overview

The scope of the design and development of the belt conveyor control system
is to minimize the necessary amount of physical labor, to reduce energy con-
sumption, and to reduce the amount of information required, and thus to overall
increase the global efficiency of the conveyor operation and reduce the occurrence
of accidents [3]. The experiments will allow the calculation and prediction of the
conveyor belt service life under the specific operating conditions. A test rig was
constructed by Chen et al. [10] and Petrikova [9].

The major purpose of the data analysis is to explicate, interpret, and describe
the process using statistical methods [7]. Iyer [6] discussed statistical procedures
used in the calibration of measuring devices or measurement procedures. D’Errico
[1] provided systematic treatment of statistical methods for measuring estimation.
Fiset [5] analyzes operational methods for verifying the adequacy of mathematical
models of multidimensional dynamical systems with biased measurements on the



basis of statistical analysis of the sequences of residuals between outputs coor-
dinates of systems and their models. The known measuring systems for contact
forces measurement on the guide idlers are currently only based on theory [8].

3 Results and discussion

The test equipment of the pipe conveyor hexagonal idler housing consists of the
8 m long fixed transport belt. This equipment was described detailed in Molnár
et al. [2]. So this is only a short description.

3.1 Test equipment

The measuring conception consists of two parts, tensioning part and idler hous-
ing part. The tensioning part is shown on Figure 1. The purposes of experiments
realized at the equipment are based on change tension forces and analyzed con-
tact forces changes with regard to the experiment goal. The tension forces are
marked as TF23 and TF24 by the position number and abbreviated from TF,
which means Tension Force, as shown on Figure 1. Total tension force, marked
as TFTotal, is sum of TF23 and TF24.

Figure 1: The tension force marking on the test equipment

Idler housing part of the equipment consists of the three hexagonal idler hous-
ing models. The contact force measurement is realized at each idler position. The
first type of idler housing is that, which makes formation of the belt into the pipe



shape. The second kind of the idler housing represents closed belt idler housings
that is supporting and guiding the shaped piped belt. It represents most of the
idler housings along the whole conveyor trajectory - see Figure 2. The third type
of the idler housing is that kind, which is the last one before opening of the belt
into the open, flat shape.

Figure 2: Marking positions of measured contact forces

The input variables of the experiment are the set amount of the tension force
and the set parameters of the device. The output variable is the contact force
marked by the position number and abbreviated from IDs that means idler. It is
shown on Figure 2.

3.2 The principle and model of the experiment

The goal of the experiment is to identify whether there exists a significant
effect of input variables changes in output variables that result in contact forces
change.

Statistical model of the contact force formation is:

ID = f(TFTotal, Factorj, Factorj+1, . . . , Factork) + e.

Where:
ID is contact force value on the ID position, considered to be a functional relation.
TFTotal is adjusted tension force.
Factorj, Factorj+1, . . . , Factork can be interpreted as parameters of the device:
kind of tension force setting, filling with material etc.
e is an error.



For purpose of analyses we named contact force changes as a variability. The
variability of the measured values is caused either by the intentional changes or
by the disruptive influences. The intentional input changes are presented and
assigned to the variability source. The remaining variability in the contact force
results is caused by disrupting inputs, at formula is named error. To obtain
accurate results it is important to minimize variability from sources that are not
part of experimental research. Eliminate of disrupting variability is a way to set
tension force.

The experimental measurements were performed by two experimenters who
both independently changed the tension force. Each experimenter set one tension
force. The first experimenter set the wish value of TF23 and the second one set
the wish value of TF24. The testing equipment was left without intervention for
60 s after each set-up process before the tension force was again changed.

Figure 3: Tensioning and relaxating phase of the experiment

The facts known about the measuring equipment and the resulting conse-
quences were taken into consideration for the determination of the methodology
specified for the belt tensioning which was simultaneously performed manually by
two service persons. For this reason it was not possible to keep a full synchroniza-
tion of the time behavior during the process of the tension force increase. The
model test equipment is static and after achieving the required tension force the
system is stabilized. Jump movements of the transport belt on the idler rolls are
typical for this stable state. The “relaxation creep” of the transport belt material
is another Important attribute. Both aspects are influencing the contact force
behavior. Figure 3 presents the behavior over the time of the tension forces for
tension force settings of TFTotal 12000 N, 18000 N and 24000 N. The horizontal



axis is the absolute time of the experiment. The vertical axis depicts tension
forces of TF23 and TF24. Figure 1 represents the end of the endurance with
the tension force defined at the value TFTotal = 12000 N, it is TF23 + TF24.
The next phase is tensioning. The vertical line “Stop tensioning” defines the time,
which was necessary for achieving the tension force TF23, maximum value before
the endurance phase. Tensioning at the TF24 was not finished at this time. The
following time interval in the graph illustrates the endurance phase with the ad-
justed tension force value of 18000 N. It is possible to see a decrease of the TF23
and TF24 during this phase because of conveyor belt material properties. Some
of the contact forces are increasing during the endurance phase while others are
decreasing. The measuring process continues during the next tensioning phase.
The beginning of this phase is marked with the vertical line marked “Start ten-
sioning”, which enables recording of a delay in the position TF23 in comparison
to the position TF24.

The data used for our analysis are obtained from the relaxation phase compiled
with the same time from beginning of the relaxation phase. This time is up to
30 s. The first vertical line in the graph “Stop tensioning”, i.e. the end of the
tensioning phase, is the time point 250 s in the absolute time of the experiment.
The second vertical line “Start tensioing” - i.e. the end of the relaxation phase and
beginning of a new tensioning phase, is the time point 308 s in the absolute time
of the experiment. The difference between the lines is approx. 60 s. The data
used for the analyses are from the middle part of the relaxation phase.

It is not possible to determine the exact starting point of the relaxation phase
according to the records obtained from the measurements and determination of
the starting point, using the graph is time demanding and subjective. It is clear
that the measurement method causes variability that should be eliminated.

3.3 The propose a method of the phase analysis

A method of the phase analysis propose for our reason is based on the differ-
ences between the successive values. This method is founded on the reasonable
assumption that the difference between the two successive values of the tension
forces during the tensioning phase is positive.

The evaluated tension force value is the TFTotal. The calculation process,
which used the given sampling frequency, was unable to determine the boundary
of the tensioning phase uniquely. For this reason the difference between the suc-
cessive values was calculated using the step 1 to 25 in the time interval from 233 s
to 250 s in the absolute time of the experiment. This modification simulated a
reduction of the sampling frequency. There was also a specified number of neg-
ative differences for each step during the given time interval - i.e. a number of
wrong signals concerning finishing of the tensioning phase. The shortest possible



step D = 1.3 was determined from the calculations and the wrong signals about
finishing of the tensioning phase were eliminated in this way.

Figure 4: The difference TFTotal with a step of difference D = 0.1 and D = 1

Figure 5: The difference TFTotal with a step of difference D = 0.1 and D = 1.5

Figure 4 and Figure 5 illustrate the differences in the tensioning phase (tran-
sition of the curves below the x-axis) if the difference step is increasing. The step
D = 1.5 (1.5 s) and the number 10 of successive negative signs of the signals were
selected in order to determine the end of the tensioning phase during the time
between the two tensioning phases - i.e. approx. in the middle of the interval.



The tension force differences are oscillating around zero for all steps and the
system is sufficiently stable. This fact confirms a suitability of the adopted deci-
sion to use the data obtained in the time 30 s after the beginning of the relaxation
phase.

4 Conclusion

In this paper we were interested in the method developed for the identification
of the experiment phase (tensioning and relaxation), which is based on the differ-
ences of the contact force time behaviors. This method eliminates the variability
of the measurement data.

Theoretical knowledge from research of the pipe conveyors are important in
terms of the safety of their usage and economic efficiency. The complexity of
the operating conditions, and the amount of uncontrolled inputs does not allow
the realization of the operational measures which would bring possibilities for
generalizations.

From the presented method, we expect the contingency of algorithms and the
possibility of pre-processing of measured results in a simple manner without the
need for manual calculations. It is uncertain whether the results of using the pro-
posed method will be more useful for practice comparable to the old approach.
Therefore, in the next step of the research, we will analyze the repeatability of
the measurements. Within it, we aim to find out whether the method affects the
accuracy and comparability of measurements.

Acknowledgment

This work was supported by the VEGA 1/0403/18, VEGA 1/0063/16 and
VEGA 1/0332/20.



Bibliography

[1] D’Errico, G. E.: Issues in Significance Testing. Measurement. 42(10), (2009),
1478–1481.

[2] D’Errico, G. E.: What Does Mean Mean? - A Systematic Treatment of
Statistical Methods for Measurand Estimation. Measurement. 43(4), (2010),
504–512.

[3] Dmitriev, V. G., Efimov, M. S.: Estimation and Way of Decrease of Belt’s
Angular Deflection of a Tubular Conveyor at Rotary Movement. Min. Inf.
Anal. Bull. 16, (2009), 31–53.

[4] Drabiková, E., Fecková Škrabuľáková, E.: Decision Trees - A Powerful Tool
in Mathematical and Economic Modeling. In: 18th International Carpathian
Control Conference 2017 (ICCC 2017), Danvers, IEEE, 34–39.

[5] Fiset, M., Dussault, D.: Laboratory Simulation of the Wear Process of Belt
Conveyor Rollers. In: 9th Internattional Conf. on Wear of Materials: San
Francisco, CA: Apr. 13-16, 1993, WEAR, (162), 1012–1015.

[6] Iyer, H.: Statistical Calibration and Measurements. R. Khattree, C. R. Rao
(Eds.), Handbook of Statistics, Statistics in Industry, vol. 22.

[7] Molnár, V., Fedorko, G., Stehlíková, B., Michalik, P., Kopas, M.: Mathemat-
ical Models for Indirect Measurement of Contact Forces in Hexagonal Idler
Housing of Pipe Conveyor. Measurement. 47, (2014), 794–803.

[8] Molnár, V., Fedorko, G., Stehlíková, B., Tomašková, M., Hulínová, Z.: Anal-
ysis of Asymmetrical Effect of Tension Forces in Conveyor Belt on the Idler
Roll Contact Forces in the Idler Housing. Measurement. 52, (2014), 22–32.

[9] Petrikova, I., Marvalova, B., Tuan, H. S., Bocko, P.: Experimental Evaluation
of Mechanical Properties of Belt Conveyor with Textile Reinforcement and
Numerical Simulation of its Behaviour. In: PConstitutive Models for Rubber
VIII. Proceedings of the 8th European Conference on Constitutive Models
for Rubbers, ECCMR 2013, (2013), 641–644.

62



[10] Sheng Chen, G., Lee, J. H., Narravula, V., Kitchin, T.: Friction and Noise
of Rubber Belt in Low Temperature Condition. The influence of interfacial
ice film, Cold Reg. Sci. Technol. 71, (2012), 95–101.

[11] Škrabuľáková, E., Marasová, D., Tomášková, M., Grendel, P.: Identification
of Factors Causing Damage to Conveyor Belts During the Transportation of
Coal. Applied Mechanics and Materials 683, (2014), Trans Tech Publications,
Switzerland, 130–134.

[12] Woodcock, C. R., Mason, J. S.: Belt Conveyors. Bulk Solids Handling SE-7,
(1988), 260–297.

Article history:

Received: 2019/06/10
Received in revised form: 2019/07/29
Accepted: 2019/07/30



Cardinal invariant λ(S, J)

Viera Šottová1

Abstract: The cardinal invariant λ(I, J) was introduced by J. Šupina in [7]
as a combinatorial characteristics of S1(I-Γ, J-Γ)-space. We analyze the cardinal
invariant λ(I, J) which we represent through slaloms, as was stated in [6]. We
focus on three kinds of slaloms, namely h-slaloms, A-slaloms and I-slaloms, and
we investigate the corresponding λ(S, J) values. Finally, we summarize relations
among mentioned cardinal invariants with respect to the well-known cardinal in-
variants of the continuum.

Keywords: Ideals, Slaloms, Cardinal invariant λ(I, J).

Mathematics Subject Classification: 46A63, 37F20, 03E17.

1 Introduction

We study the cardinal invariant λ(I, J) introduced by J. Šupina in [7] such that
non(S1(I-Γ, J-Γ)) = λ(I, J), where S1(I-Γ, J-Γ) is a selection principle on a topo-
logical space and I, J are ideals on natural numbers ω, see [7] for further infor-
mation. We deal also with its slight modification in the first parameter which we
shall describe now.

Let h ∈ ωω and h(n) ≥ 1 for all but finitely many n ∈ ω. The sequence
s of finite subsets of ω is called an h-slalom if |s(n)| ≤ h(n) for each n ∈ ω,
see A. Blass [3]. We say that a function ϕ ∈ ωω

• goes through an h-slalom s if ϕ(n) ∈ s(n) for all but finitely many n ∈ ω,

• evades an h-slalom s if ϕ(n) ∈ s(n) for finitely many n ∈ ω.
1Institute of Mathematics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia, E-mail:

viera.sottova@student.upjs.sk, supported by the grants 1/0097/16 of Slovak Grant Agency VEGA and vvgs-pf-
2019-1037.
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Let us recall a standard result by T. Bartoszynski [1] regarding slaloms as well.
He has shown that

add(N) = min {|F| : F ⊆ ωω, (∀ id-slalom s)(∃ϕ ∈ F) ¬(ϕ goes through s)} ,

where id obviously represents the identity. We shall study a cardinal invariant
λ(h,Fin) defined by

λ(h,Fin) = min{|R| : R consists of h-slaloms, (∀ϕ ∈ ωω)(∃s ∈ R) ¬(ϕ evades s)}.

The paper is divided into 6 sections. Main results are proved in the Section 2
which deals with the aforementioned cardinal invariant λ(h,Fin) with respect
to h-slaloms. In the third part, we discuss arbitrary families of slaloms and
the corresponding invariant λ(S, J). The Section 4 discusses a cardinal invariant
λ(I, J) having ideals in both parameters, which was originally introduced in [7].
We provide the combinatorial proof of λ(I, J) being monotone with respect to or-
dering of ideals here. Finally, we summarize obtained results to the diagram in
the Conclusion. The last section called Appendix contains definitions and refer-
ences to well-known cardinal invariants of notions appearing in the paper.

2 h-slaloms

In the present chapter, we focus on discussing the cardinal invariant λ(h,Fin)
for different functions h. Evidently, it is possible to compare cardinals λ(h,Fin)
with regards to the ordering of functions h. In particular, λ(h,Fin) is decreasing
with respect to the first parameter. Indeed, let h1, h2 ∈ ωω be functions such that
h1(n) ≤ h2(n) for each n ∈ ω. Since each h1-slalom is an h2-slalom we obtain
λ(h2,Fin) ≤ λ(h1,Fin). Eventually, it is enough to suppose that h1(n) ≤ h2(n)
for all but finitely many n ∈ ω.

The following characterization showed by T. Bartoszyński [2] can be viewed as
a degenerated case of the cardinal λ(h,Fin), where h is a constant 1 function.2

non(M) = min {|F| : F ⊆ ωω, (∀ϕ ∈ ωω)(∃f ∈ F) | {i : ϕ(i) = f(i)} | = ℵ0} . (1)

Our goal is to prove that the cardinal invariant λ(h,Fin) takes value non(M)
for arbitrary function h ∈ ωω. Firstly, we begin with the bounded functions.

Lemma 1. Let h be a bounded function such that h(n) 6= 0 for infinitely many
n ∈ ω. Then non(M) = λ(h,Fin).

Proof. The λ(h,Fin) ≤ non(M) is consequence of (1).
2We will denote such constant functions bolt writing in the chapter, for instance 1.



Let h ∈ ωω be a bounded functions and letM = max {h(n) : n ∈ ω}. Suppose
that R is a family of h-slaloms witnessing the equality |R| = λ(h,Fin). Define
functions f si the following way: f s0 (n) = max {a : a ∈ s(n)} for i = 0 and

f si (n) =

{
fsi−1(n), if s(n) \ {fs0 (n) . . . fsi−1(n)} = ∅,
max

{
a : a ∈ s(n) \ {fs0 (n), . . . fsi−1(n)}

}
, otherwise,

for each 0 < i < M and s ∈ R. Let F = {f si : i < M and s ∈ R}. Thus
|F| = |R|. Consider a function ϕ ∈ ωω. Then there is an h-slalom s from
R such that | {n : ϕ(n) ∈ s(n)} | = ℵ0. Finally, there is i < M such that
| {n : ϕ(n) = f si (n)} | = ℵ0 because M is finite.

It is clear that the inequality λ(h,Fin) ≤ non(M) also holds in a case of
unbounded functions h. The reverse is not so obvious. The following statement
presents λ(h,Fin) takes the same value for any unbounded function h.

Lemma 2. Let h1, h2 ∈ ωω be unbounded functions. Then

λ(h1,Fin) = λ(h2,Fin).

Proof. Let h1, h2 ∈ ωω be unbounded functions such that h1(n) ≤ h2(n) for each
n ∈ ω. Thus λ(h2,Fin) ≤ λ(h1,Fin). Since h1 is the unbounded there exists
an increasing function ψ ∈ ωω such that h2(n) ≤ h1(ψ(n)) for each n ∈ ω and
then λ((h1 ◦ψ),Fin) ≤ λ(h2,Fin). Now let R2 be a family of h1 ◦ψ-slaloms such
that |R2| < λ(h1,Fin). Define a family of h1-slaloms

R1 =
{
s1 : s1(n) = s2(i), if ∃i ψ(i) = n or s1(n) = ∅, otherwise; for s2 ∈ R2

}
.

Since |R1| ≤ |R2| there is ϕ1 such that
{
n : ϕ1(n) ∈ s1(n)

}
is finite for each

s1 ∈ R1. Consider a function ϕ2 = ϕ1 ◦ ψ and s2 ∈ R2. Then{
n : ϕ2(n) ∈ s2(n)

}
⊆
{
n : ϕ1(n) ∈ s1(n)

}
which is finite. Thus λ(h1,Fin) ≤ λ(h2,Fin).

Finally, we prove the crucial lemma for the main result of this chapter. We
focus on two specific functions, namely id and 1, which connect above facts.

Lemma 3. λ(1,Fin) ≤ λ(id,Fin).3

Proof. Let 〈In : n ∈ ω〉 be an interval partition of ω such that |In| = n and
Pn =

{
t : t ∈ Inω

}
for any n ∈ ω. Let ψ, ϕ ∈

∏
n∈ω Pn. We say that ψ � ϕ iff

ψ(n) ≤ ϕ(n) as functions for each n ∈ ω. Moreover, it is obvious that (ωω,≤)
and (

∏
n∈ω Pn,�) are isomorphic. We will use them interchangeably without any

other comments.
3After we sent the paper, D.A. Mejí advised an idea of the proof of the mentioned statement. Therefore, we

decided with respect to our particular results to complete the proof and add it.



Let S ⊆
{
s ∈

∏
n∈ω[Pn]

<ω : |s(n)| ≤ n
}
be a family of id-slaloms of the car-

dinality λ(id,Fin) which witnesses this property. We can enumerate members of
s(n) such that s(n) = {tn,k ∈ Pn : k ∈ In} for each n ∈ ω and s ∈ S. Define
a function ys such that

if k ∈ In then ys(k) = tn,k(k)

where tn,k ∈ s(n). Let R = {ys : s ∈ S}. Thus |R| ≤ |S|. Moreover, it is obvious
that R is a family of 1-slaloms.

Let f ∈ ωω. Consider a corresponding function ϕ ∈
∏

n∈ω Pn defined by
ϕ(n) = {f(i) : i ∈ In}. By assumption there is an id-slalom s′ ∈ S such that
| {n ∈ ω : ϕ(n) ∈ s′(n)} | = ℵ0.

Finally for the corresponding 1-slalom y′s ∈ R, we have

{n ∈ ω : ϕ(n) ∈ s′(n)} = {n ∈ ω : ϕ(n) = tn,k for some k ∈ In}
⊆ {k ∈ ω : f(k) = ys′(k)} .

Theorem 4. λ(h,Fin) = non(M) for any h ∈ ωω.

Proof. By the discussion before Lemma 1 and by (1) we have

λ(h,Fin) ≤ λ(1,Fin) = non(M)

for any function h. By Lemma 2 λ(id,Fin) = λ(h,Fin) for any unbounded
function h. By Lemma 1 λ(1,Fin) = λ(h,Fin) for any bounded function h.
Hence, by Lemma 3 we can conclude λ(h,Fin) = non(M) for any h ∈ ωω.

3 A-slaloms

The chapter discusses the value of λ(A, J), yet another modification of λ(I, J)
for A ⊆ P(ω). We investigate the cardinal invariant with respect to different
families in the first parameter. There is an easy observation mentioned in [6]
which describes the taken values of λ(A,Fin) for very particular families A. We
offer the overview of that in more details.

Let S ⊆ ωP(ω). A sequence s ∈ S will be called a slalom. Let J be an ideal
on ω. Recall a definition of J-going of functions through slaloms which was used
in [6]. A function ϕ ∈ ωω

• J-goes through a slalom s ∈ S if {n : ϕ(n) ∈ s(n)} ∈ Jd,
i.e., {n : ϕ(n) ∈ ω \ s(n)} ∈ J,

• J-evades a slalom s ∈ S if {n : ϕ(n) ∈ s(n)} ∈ J.



In the same way as for h-slaloms, we say that ϕ goes through a slalom s ∈ S

instead of ϕ Fin-goes through s and ϕ evades a slalom s ∈ S, if Fin-evades s.
We shall define the cardinal invariant λ(S, J) as

λ(S, J) = min{|R| : R ⊆ S, (∀ϕ ∈ ωω)(∃s ∈ R) ¬(ϕ J-evades s)},
= min {|R| : R ⊆ S, (∀ϕ ∈ ωω)(∃s ∈ R) {n : ϕ(n) ∈ s(n)} /∈ J}.

It is obvious that aforementioned h-slaloms are particular case of slaloms with
size additionally handled by function h. Therefore, there is no collision be-
tween notations λ(h,Fin) and λ(S,Fin). In fact, λ(h,Fin) is a particular case
of λ(S,Fin) for family S of all finite slaloms bounded in size by the function h.
Similarly as for h-slaloms, we can describe a monotonicity of λ(S, J) with respect
to an inclusion. If S1 ⊆ S2 and J1 ⊆ J2 then λ(S2, J1) ≤ λ(S1, J2).

From now on, we will take care of different familiesA instead of P(ω) in the def-
inition of slaloms. Thus, let us stress that we use A-slaloms to denote ωA-slaloms
and λ(A, J) instead of λ(ωA, J).

We say that A ⊆ P(X) has the finite union property if a complement of
a union of any finite family P ⊆ A is infinite, i.e., |X \

⋃
P| = ℵ0. Note that

there is an ideal which contains A.

Proposition 5. Let A ⊆ P(ω) be such family that
⋃

A = ω.

1. If A has the finite union property and Fin ⊆ A then p ≤ λ(A,Fin) ≤ b.

2. If A does not have the finite union property then

λ(A,Fin) = min

{
k : {A0, A1, . . . , Ak−1} ⊆ A and

⋃
i<k

Ai = ω

}
.

Proof. Since A has the finite union property there is an ideal I on ω such that
A ⊆ I. Thus it holds p ≤ λ(I,Fin) ≤ λ(A,Fin). The first part of the inequality
comes from λ(I,Fin) = min{cov∗(I), b} because both considered cardinals are
at least p. On the other hand, since Fin ⊆ A we have λ(A,Fin) ≤ λ(Fin,Fin)
which equals b. For both non-trivial relations see [6].

The second part is obvious.

For instance, let A = {{n} : n ∈ ω}. Then clearly, λ(A,Fin) = ω. Moreover,
one can easily observe that in the Proposition 5 the assumption

⋃
A = ω is

necessary.

4 I-slaloms

Another specific families are ideals on ω. In fact, the λ(I, J) is the original
notion introduced in [7] for ideals I, J. It was further investigated in [6].



In [7] there was mentioned the following result. It is a consequence of relations
between S1(I-Γ, J-Γ)-spaces and λ(I, J). We provide the direct combinatorial
proof.

Proposition 6 (J. Šupina [7]). Let I1, I2, J1, J2 be ideals on ω such that I1 ≤K I2
and J1 ≤KB J2. Then λ(I2, J1) ≤ λ(I1, J2).

4

Proof. We prove the proposition in two steps. Firstly, we show the inequality
λ(I, J1) ≤ λ(I, J2) for any ideal I.

Consider R2 ⊆ ωI such that |R2| < λ(I, J1). Since J1 ≤KB J2 there is a finite-
to-one function ψ ∈ ωω such that J1 ≤ψ J2. We define a family R1 which
consisting of slaloms s1 determined by s2 ∈ R2 such that

s1(i) =

{⋃
ψ(n)=i s

2(n) if ∃n ψ(n) = i,

∅ otherwise.

Thus |R1| ≤ |R2|. By the assumption, there exists a function ϕ1 ∈ ωω such that{
n : ϕ1(n) ∈ s1(n)

}
∈ J1 for all s ∈ R1. Consider ϕ such that ϕ(n) = ϕ1(ψ(n))

for n ∈ ω. Then for an arbitrary slalom s2 ∈ R2 we have

{n : ϕ(n) ∈ s2(n)} ⊆
{
n : ϕ1(ψ(n)) ∈ s1(ψ(n))

}
= ψ−1({n : ϕ1(n) ∈ s1(n)}) ∈ J2.

i.e., the function ϕ J2-evades each slalom s2 ∈ R2.
In the second step we show that if I1 ≤K I2 then λ(I2, J) ≤ λ(I1, J) for

an arbitrary ideal J. Similarly as in the previous case, we consider a family
R1 ⊆ ωI1, |R1| < λ(I2, J). By the assumption, there is a function ψ ∈ ωω such
that I1 ≤ψ I2. Define a family R2 by

R2 = {s2 : s2(n) = ψ−1(s1(n)) for s1 ∈ R1}.

Since |R2| ≤ |R1| there is a function ϕ2 ∈ ωω such that J-evades each slalom
s2 ∈ R2. Let ϕ ∈ ωω be a function such that ϕ(n) = ψ(ϕ2(n)) for each n ∈ ω.
Hence for an arbitrary slalom s1 ∈ R1 we have

{n : ϕ(n) ∈ s1(n)} = {n : ψ(ϕ2(n)) ∈ s1(n)} ⊆ {n : ϕ2(n) ∈ ψ−1(s1(n))}
= {n : ϕ2(n) ∈ s2(n)} ∈ J.

i.e., the function ϕ J-evades each slalom s1 ∈ R1.

5 Conclusion

In general, λ(S, J) can take several different values. Hence, there are at least
two interesting questions coming: which values of known cardinal invariants could
be taken and for which kinds of slaloms it could be taken.

4See Appendix for the definition of used orders of ideals.



In [6] it was shown that λ(I,Fin) = min{cov∗(I), b} for tall ideal I. As [5] lists
cov∗(I)5 values for known ideals we can easily determine their λ(I,Fin) value for
some of them, see [6]. Particularly, the nowhere dense ideal6 (denoted nwd) takes
the value cov∗(nwd) = cov(M). Therefore, λ(nwd,Fin) = add(M), see [4, 5].

There was also shown that λ(Fin, J) = bJ in [7]. In particular, we obtain
λ(Fin,Fin) = b. Moreover, we proved λ(h,Fin) = non(M) for arbitrary func-
tion h. Finally, we summarize all obtained relations to the diagram.

p

λ(nwd,Fin) = add(M) min{cov∗(I), b}= λ(I,Fin)

cov(N) b = λ(Fin,Fin) λ(I, J)

bJ = λ(Fin, J)λ(h,Fin) = non(M)

λ(h, J) d

c

Figure 1: Cardinal invariants of the continuum and the λ(S, J).

Appendix

By an ideal7 on ω we understand a family I ⊆ P(ω) that is hereditary, i.e.,
B ∈ I for any B ⊆ A ∈ I, closed under finite unions, contains all finite subsets
of ω and ω /∈ I. If not stated explicitly, ideal is an ideal on ω. Calligraphic I, J
are used to denote ideals. For A ⊆ P(ω) we denote

Ad = {A ⊆ ω : ω \ A ∈ A} .

Note that Fin is the ideal on ω consisting of all finite subsets of ω.
Apart from natural ordering of the pairs of all ideals by inclusion we can

consider the following way. Let M1, M2 be infinite sets and K1 ⊆ P(M1), K2 ⊆
P(M2). If ϕ : M2 →M1, the image of K2 is the family

ϕ→(K2) =
{
A ⊆M1 : ϕ−1(A) ∈ K2

}
.

5cov∗(I) = min {|A| : A ⊆ I ∧ (∀S ∈ [ω]ω)(∃A ∈ A) |S ∩A| = ω}, i.e., the smallest cardinality of a subset
of I that does not have a pseudounion, see [5].

6The ideal on the set of rational numbers Q whose elements are the nowhere dense subsets of Q, see [5].
7Note that by ideal on ω we understand ideals defined on set of natural numbers as well as ideals on rational

numbers and so on.



If K2 is an ideal on M2 then ϕ→(K2) is closed under subsets and finite unions
and M1 6∈ ϕ→(K2). If ϕ is in addition finite-to-one then ϕ→(K2) is the ideal. For
ϕ : M2 →M1 we write

• K1 ≤ϕ K2 if K1 ⊆ ϕ→(K2), i.e., ϕ−1(I) ∈ K2 for any I ∈ K1.

Then

• K1 ≤K K2 if there is a function ϕ : M2 →M1 s.t. K1 ≤ϕ K2,

• K1 ≤KB K2 if there is a finite-to-one function ϕ : M2 →M1 s.t. K1 ≤ϕ K2.

In the paper, we mentioned cardinal invariants of the continuum, like b, d,
add(N), add(M), cov(N) or non(M). All of them are uncountable and at most
equal to c. For more see any standard textbook, e.g. [3, 4]. Moreover, an ideal
version of b, the invariant bJ can be found in [5].
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